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Appendix A

Some facts on categories and limits

A.1 Comma categories

Definition A.1.1. Let C be a category and c € O(C).
The comma category (c|C) of objects of C under c is defined by

O((c|C)) = {(u,d)|d € O(C),u e C(c,d)}

and

clC) ((ur,¢,), (us,¢3)) = {f € Clcy, )| f ouy = s}

—~

the comma category (C|c) of objects of C over c is defined by
O((Clc)) = {(d,u)|d e O(C),ue C(d,c)}
and

(Cle)((er,w), (er,un)) = {f € é(cl, Cy)|uz 0 f = uy}.

Definition A.1.2. Let F:C—D be a functor and d € O(D).
The comma category (d|F) of objects of C F-under d is defined by

O((d|F)) = {(u,c)|c € O(C),u e D(d,F(c))}

and

(AIF) ((ur,¢1), (us,¢5)) = {f € 6((}1, ) |F(f) ouy = us};
the comma category (F|d) of objects of C F-over d is defined by
O((Fld)) = {(c,u)lc € O(C),ue D(F(c),d)}

and

Fld)((c,,w), (co,u,)) = {f € 6((}1, Cy)|u, 0 F(f) = uy}.

—~

bt

(A.1)

(A.2)

(A.5)

(A.6)

(A7)

(A.8)
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A.2 Universal arrows and limits

Proposition A.2.1. Let C and D be categories, d € O(D). There is a functor C$® such
that for c € O(C)

Ceo(c) = d (4.9)
and for f € M(C)

COP(f) = idq. (A.10)
Proof. Routine check. M

Definition A.2.1. Let C and D be categories, d € O(D). The functor C$® is called the

constant functor from C to D relative to the object d.

Proposition A.2.2. Let C and D be categories, f € M(D). There is a natural transfor-

mation v« Cangy — Clatyy such that for c € O(C)

P =1 (A.11)

C

Proof. Routine check. 53¢

Definition A.2.2. Let C and D be categories, f € M(D). The natural transformation
777 is called the constant natural transformation from Cgy, to CIy, relative

to the morphism f.

Proposition A.2.3. Let C and D be categories, d, € O(D) d, € O(D). If7: CJP — CP

is a natural transformation, then there exists f € D(d,,d,) such that T = vf’D.

Proof. For ¢, € O(C), ¢, € O(C) and ¢ € homc(c,, ¢,) the diagram

N TR .
Cs (cl)—>Cd1" (c,) (A.12)
’Tcl LTCZ
o (g)

must commute. But C$P(c,) = C$P(c,) = d,, CFP(c,) = CTP(c,) = dy, CTP(g) = ida,,
CEP(g) = ida,, 80 T, 0ida, = ida, o7, that is 7., = 7. This holds for any ¢, € O(C) and
c, € O(C), thus 7 = 7.". P

Proposition A.2.4. Let J, C be categories. There is a functor AS : C — C? defined by:
e Af(c)=Cr° forceO(C)

o AJ(f) =17 for fe M(C).
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Proof. Routine check. M

Definition A.2.3. Let J, C be categories. The functor AS is called the diagonal functor
in C relative to J. The category J is called the index category for the diagonal

functor AS.

Definition A.2.4. Let F:C—D be a functor, d € O(D). An arrow from d to F is a
pair (c,u) where c € O(C), u € D(d, F(c)).

Remark A.2.1. According to Definition A.2.4 a pair (c,u) is an arrow from d € O(D) to
the functor F:C—D if

1. ce O(C)
2. dom(u) =d
3. cod(u) = F(c).

Notation A.2.1. Let C be a category, F:C—Set. We will denote with C[F]| the category
defined by

O(C[F]) = {(c,z)|c € O(C),z € F(c)} (A.13)

and

CIF] ((cy, 1), (€25 22)) = {f € E(cl, c) [F(f)(x)) = 2.} (A.14)

Definition A.2.5. Let F:C—D be a functor, d € O(D). Two arrows (c,,u,), (c,, u,) from

d to F are isomorphic if there is an isomorphism i : ¢, — ¢, such that u, = F (i) o u,.

Definition A.2.6. Let F:C—D be a functor, d € O(D). An arrow (c,u) from d to F is
universal if and only if for any arrow (c,,u,) from d to F there is a unique morphism
f: ¢ — c, such that u, = F(f) ou, that is, the diagram

d —=F(c) (A.15)

\“’: lF(f)

F(c,)

commutes.

Proposition A.2.5. Let F:C—D be a functor, d € O(D). An arrow (c,u) from d to F

is universal if and only if (c,u) is an initial object in the category (d|F).

Proof. Routine check. B¢
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Definition A.2.7. Let F:C—Set be a functor. A universal element of F is a pair
(c,z), where ¢ € O(C) and = € F(c), and for every d € O(C) and y € F(d) there is a
unique f : ¢ — d such that y = F(f)(z).

Proposition A.2.6. Let F:C—D be a functor, d € O(D). An arrow (c,u) from d to F

is universal if and only if it is a universal element of the functor D(d, F—).
Proof. Routine check. M

Proposition A.2.7. Let F:C—Set be a functor. A pair (c,x) is a universal element of
F if and only if for any one-element set =, if u : = — F(c) is the map defined by u(x) = x,

then (c,u) is a universal arrow from = to F.
Proof. Routine check. B¢

Proposition A.2.8. Let F:C—Set be a functor. A pair (c,x) is a universal element of

F if and only if it is an initial object in the category C[F].
Proof. Routine check. B¢

Proposition A.2.9. Let F:C—D be a functor, d € O(D). An arrow (c,u) from d to F

is universal if and only if the maps
9% : Cle,c,) — D(d, F(c,))
f=F(f)ou
define a natural isomorphism ¢ between the hom-functors C (c,—) and D (d,F(—)).

Proof. The statement that the map ¢£:’“) is a bijection for each c, is exactly the statement

that (c,u) is a universal arrow from d to F. Now, if g € C(c,, c,) the diagram

C(c,c,) —=D(d,F(c,)) (A.16)

commutes because, for f € C(c,c,)

D(d.F(g)) (65 (f)) = D(d,F(9)) (F(f) o) = F(g) o F(f) 0w

and

¢l (C(c, 9)(f)) = ¢! (fog) =F(fog)ou=F(g) o F(f) ou.

so ¢(©% is a natural transformation.
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Definition A.2.8. Let (c,u) be a universal arrow. The natural isomorphism ¢ is

called the natural isomorphism associated to (c,u).

Proposition A.2.10. Let (c,u) be a universal arrow. Then u = ¢=%(id,).

Proof. Let (c,u) be a universal arrow to the functor F. Then ¢(*" (id,) = F(id.)ou = u ¥
Notation A.2.2. For a natural transformation ¢ : C(c, —) — F set u® = ¢,(id.).

Proposition A.2.11. Let F:C—D be a functor, ce O(C), de O(D), ¢ a natural iso-
morphism between the functors C (c,—) and D (d,F—). Then (c,u®) is a universal arrow
fromd to F and ¢ = qﬁ(c’m).

Proof. Let f € C(c,c,). Since the diagram

Cl(c,c) —2-D(d,F(c)) (A.17)

. (Clc, /)(id.)) = D(d,F(f)) (¢.(id.)), so for each ¢ € O(C)
and f € C(c,c,) ¢.,(f) = F(f) ou®. By Proposition A.2.9 (c,u?) is a universal arrow
from d to F. M

commutes, in particular ¢,

Corollary A.2.1. Let F:C—D be a functor, de O(D). An arrow (c,u) from d to F is
universal if and only if there is a natural bijection ¢ : C(c, —) — D(d,F—) and u = ¢,(id.).

Proposition A.2.12. Any two universal arrows from an object d € O(D) to a functor

F:C—D are isomorphic.

Proof. Let (c,,u,) and (c,,u,) both be universal arrows from d to F. Then, since (c;, u,)
is universal there is f : ¢; — ¢, such that u, = F(f) o u, and, since (c,,u,) is universal,
there is g : ¢, — ¢, such that u, = F(g) ou,. Sou, = F(g) o F(f)ou, = F(go f)ou,
whence go f = ide,, because (c;, u,) is universal. Also u, = F(f)oF(g)ou, = F(fog)ou,

whence f o g = id,,, because (c,,u,) is universal. So f is an isomorphism. B3

Lemma A.2.1 (Yoneda). A natural transformation ¢ : C(c,—) — F is completely deter-
mined by u?. More specifically, let N©:Set® x C—Set be the functor defined by

e N¢(F,c) = Set(C(c, —),F) for ce O(C),F € O(Set®)

o N°(r, f) = Set(C(f, ), )

and E°:Set® xC—Set the functor defined by

e E°(F,c) =F(c)
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o ES(T, ) = Teoas(dom7(f)).
Then there is a natural isomorphism y : N© — E€ defined for F € O(Set®) and c € O(C)
by
.: N¢(F,c) - E¢(F,c
o (F.e) (F.c) (A.18)
o = u’
Proof. That ¢ : C(c, —)F — is completely determined by u# follows from the commutative
diagram
Clc,c) =—~F(c) (A.19)
C(Cvf)l lF(f)
C(c,d) ~~F(d)

which yields

pa(f) = F(f)(?). (A.20)
So yr. is a bijection for F € O(Set®) and ¢ € O(C).
Let’s show that y is natural in F. For 7 : F;, — F, we have to show that the diagram

yFl,c

NO(F,, c) Z2S ES(F,, ¢) (A.21)
NC(T,c)l lEC (r,¢)
yFQ,C

N¢(F,,c) —= E€(F,, ¢)

commutes. This can be rewritten as

YFq,c

Set®(C(c, —),F,) —=F,(c) (A.22)

SetC (C(c,),T)L Te

YFg,c

Set®(C(c, —),F,) —= F,(c)
and this commutes because for a € Set®(C(c, —),F,)
Te 0 Yr, o) = To(u”) (A.23)
and
Yepe 0 St (C(e, =), 7)(@) = yrye(r 0 0) = (r 0 ), (id,) = 7.(u). (A.24)
Let’s show that y is natural in c¢. For f : ¢, — ¢, we have to show that the diagram

YF,cq
_—

Ne(F,c,) E€(F,c,) (A.25)
NC(F,f)l lEC(F,f)
N¢(F, c,) —2 E°(F, c,)
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commutes. This can be rewritten as

YF,cq

Set®(C(c,, —),F) —2 F(c,) (A.26)

SetC(C(f,—),F)l lF(f)

YF,cq

Set®(C(c,, —),F) —=F(c,)
and this commutes because for a € Set®(C(c,, —), F)

F(f) o yre (@) = F(f)(u?) (A.27)

and

Yr,cy © W(a(ﬁ _)’ F)(Oz) = Yr,ey (a © 6<f7 _)) =
= (a0 C(f,)),, (id.,) = ag,(ide, of ) = o, (f)  (A.28)

€2

and by Equation A.20
e, (f) = F(f)(u"). (A.29)
Y

Lemma A.2.2. Let C be a category, F:C — Set a functor and = a set with only one

element. Then there is a natural isomorphism

" : Set(x,F—) > F (A.30)
defined for each c € O(C) and f : = — F(c) by

pe(f) = f(+). (A.31)
Proof. Just a routine check. M

Definition A.2.9. Let C be a category, F:C—Set. A representation of F is a pair
(r,%) where r € O(C) and 1 is a natural isomorphism between C(r, —) and F. The object
r is called a representing object of F. A functor is said to be representable if a

representation of its exists.

Lemma A.2.3. The functors C(c,,—), C(c,, —) are naturally isomorphic if and only if

the object ¢, and c, are isomorphic.

Proof. If i : ¢, — c, is an isomorphism, then it is easy to check that ¢ : C(c,,—) —
C(c,, —) defined for ¢ € O(C) by 1. : C(c,,¢) — C(c,, ) as 1b.(f) = fi~! is a natural

isomorphism.
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Let ¢ : C(c,,—) — C(c,, —) be a natural isomorphism. Set i = ¢, (id,,), j = ¢;) (id,,).

From the commutative diagram

— Yoy —

C(c, c,) —=C(c,, c)) (A.32)
C(ClJ)l LC(Cz,]’)
C(c, ) ez C(c,,c,)
we have
Ve, (Cle, ) (ide,)) = e, (jide,) = ide, = Clez,5) (¥, (id.,)) = ji (A.33)

and from the commutative diagram

Cles ey) 2 Cley, ) (A.34)
C(CQ,Z’)l lC(q %)
C(c,cy) h Cl(cy,cy)
we have
U, (Cles, i) (ide,)) = o, (iid,,) = id,, = C(cy,4) (v, (id.,)) = ij. (A.35)

M

Proposition A.2.13. Let F:C—Set and = a set with one element. If (r,u) is a universal
arrow from = to F then there is a representation (r,v) of F defined for ¢ € O(C) and

fir—F(c) by ¢.(f) = F(f)(ul+)).

Proof. By Proposition A.2.9 if (r,u) is a universal arrow from * to F then there is a
natural isomorphism v : C(r, —) — Set(x, F—) such that for c € O(C) and f:r — ¢
Y.(f) = F(f)u. The thesis then follows from Lemma A.2.2. X

Proposition A.2.14. Let F:C—Set. Then v : C(r,—) — F is a representation of F if
and only if (r,u”) is an initial object of C[F].

Proof. Let ¢ : C(r, —) — F be a representation of F. If (c,v) € O(C[F]) then v € F(c) so
let f =1_"(v). Since the diagram

C(r,r) =~ F(r) (A.36)

C(r,f)l jF(f)
C(r,c) =~F(c)

commutes we have

F(f) o n(id,) = F(f)(u’) = ¢ 0 C(r, f)(id,) = ¢e(f) = v (A.37)



2. Universal arrows and limits 13

so f & C[F]((r,u"), (c,v)). If g € C[F]((r,u"),(c,v)) then v = F(g)(u*) and () =
F(g)(u¥) = v, so g = f since 1), is a bijection. Thus (r,u*) is an initial object of (C[F]).

Let (r,u”) be an initial object of (C[F]), let’s show that 1 is a natural isomorphism. If
ce O(C) and v € F(c) there is exactly one morphism f : (r,u¥) — (c,v), and v = F(f)u¥
s0 v = (f). &S

Definition A.2.10. Let F:C—D be a functor, d € O(D). An arrow from F to d is a
pair (c,u) where ¢ € O(C), u € D(F(c),d).

Definition A.2.11. Let F:C—D be a functor, d € O(D). Two arrows (c,,u,), (Cs,u,)

from F to d are isomorphic if there is an isomorphism i : ¢, — ¢, such that u, = u,oF (7).

Definition A.2.12. Let F:C—D be a functor, d € O(D). An arrow (c,u) from F to d
is universal if and only if for any arrow (c,,u,) from F to d there is a unique morphism
f: ¢, — csuch that u, = uoF(f), that is, the diagram

Flc)—“—~d (A.38)

v

C*

commutes.

Proposition A.2.15. Any two universal arrows from a functor F:C—D to an object

d € O(D) are isomorphic.

Proof. Let (c,,u,) and (c,,u,) both be universal arrows from to F d. Then, since (c;, u,)
is universal there is f: ¢, — ¢, such that u, = F(f) o u,, and since (c,,u,) is universal
there is g : ¢, — ¢, such that u, = F(g) ou,. Sou, = F(f)o F(g)ou, = F(fog)ou
whence fog = id,,, because (c,,u,) is universal. Also u, = F(g)o F(f)ou, = F(go f)ou,

whence g o f = id,, because (c,, u,) is universal. So g is an isomorphism. e

ADD HERE PROPOSITIONS AND COROLLARIES AS FOR UNIVER-
SAL ARROWS FROM OBJECTS TO FUNCTORS

A.2.1 Direct limits

Definition A.2.13. Let F:J—C be a functor. A direct target for F is an arrow from
F to the diagonal functor AY.

Remark A.2.2. According to this definition, a direct target for the functor F:J—C is a

pair (c,7) where ¢ € O(C) and 7 is a natural transformation 7 : F — C2€. That is, for
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j € OU), 13: F(j) — c, and for any j; € O(J) and j, € O(J) and any g : j; — jo the

diagram
. F(g) .
F(j1) - F(j2) (A.39)
le Tj2
C
commutes.

Definition A.2.14. Let F:J—C be a functor. A direct limit for F is a universal arrow

from F to the diagonal functor AS.

Definition A.2.15. If (¢, 7) is a direct limit for the functor F, then c is a direct limit

object for F and 7 is a direct limit cone for F.

Remark A.2.3. According to Definition A.2.15, a direct limit for the functor F:J—C is a
direct target (c,7) for F such that if (c*,7*) is any direct target for F, there is a unique

morphism f : ¢ — ¢* such that 7* = 4% o 7, that is the diagram

F—"-(C° (A.40)

T* Jj,C
Tr

CJ,C
oF
commutes, that is, for j € O(J) the diagram

7

F(j) —

C
b
C

*

(A.41)

Commutes. More in details, for any j; € O(J) and j, € O(J) and any ¢ : j; — j2 the

diagram

F(j1) (A.42)

F(j2)
commutes.
Proposition A.2.16. Let F:J—C be a functor, de O(C). An inverse target (1, \) to F
is a limit of F if and only if there is a natural bijection ¢ : C(1,—) — C? (F,AJC—) and
A = ¢ (idy).
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Proof. Straightforward from Corollary A.2.1. M
Proposition A.2.17. Any two direct limits for a functor are isomorphic.
Proof. A direct consequence of Proposition A.2.12 B3
Notation A.2.3. We will write

lim ¥ (A.43)
for the isomorphism class of the direct limit of the functor F.

Proposition A.2.18. Let F:J—»C, G:J—C be functors, 7: F — G, (f,¢) € limF,
(g,v) € lim G. Then there is a unique morphism h : £ — g such that o1 = v, € o, that

18, the diagram

F—™ -G (A.44)

J,C J,C
Cf ’YJ’C Cf
h

commutes, or, more in details, for each j € O(J) ¢j015 = ho¢;, that is, for each j € O(J)

the diagram

F(j) —=G(j) (A.45)

ﬂ le

j
_—

h g
commutes.

Proof. Let ¢* = 1 o1. Then (g, 1*) is a direct target for F, so there is a unique morphism

h: f — g such that ¥* =~ 0 ¢, that is, o7 = 7, 0 ¢. B¢

Definition A.2.16. Let F:J—C, g:J—C be functors, 7: F — G, (f,¢) e im F, (g, %) €
lim G, h: f — g such that yo7 = 7" o¢. Then h is called a direct limit for the natural

transformation 7.

Notation A.2.4. Let F:J—-C, G:J—>C be functors, 7 : F — G. We will write

lim [7, (f,¢), (g,9)] (A.46)
for the direct limit of 7 relative to the direct limits (f, ¢) of F and (g, ) of G.

Proposition A.2.19. Let F:J—-C, G:J—->C , 7: F — G a natural transformation,
ht = lim |7, (f',¢"), (8", ¢")], h* = lim[7, (£2,¢°), (&> ¥*)]. Ifi: ' - and j: g' — g
are isomorphisms such that ¢* = ~" 0 ¢" and * = ;" o', then joh' = h*oi. In

particular, any two direct limits of T are equivalent.
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Proof. We have ¢* o7 = 7ot o1 = 7' 0oyi%0 @' = 75 0@ = 5% 0@ =

joht
J,C J,C 1 _ ~,3C 1.
Tz ©7 o —'7h20i0¢‘

Since (g?, 1 o 1) is a direct target for F, there is only one morphism & : f' — g* such that
Y Co ¢t =1?oT, 80 joh' =h?oi follows. 5

Proposition A.2.20. Let F:J—-C, G:J—C be functors, 7: F — G, 0 : F — G, and

suppose

lim 7, (f, ¢), (g, ¥)] = lim [0, (£, ¢), (g, )]

for certain direct limits (£,¢) of F and (g,7) of G. Then
lim [, (£, ¢'), (&', ¢")] = limy [0, (£, ¢'), (&', ¥")]

for any direct limits (£',¢/) of F and (g',¢') of G.

Proof. Let

h=lim [, (f,9), (g, ¥)] = lim[o, (f, 9). (g, ¥)]
t =lim [7, (f',¢), (&', ¢)]
s = lim [o, (f', &), (&', ¢")];

Ifi: f > f and j: g — g’ are isomorphisms such that ¢/ = 7“0 ¢ and ¢/ = 7].”"0 o,
then joh =toi and joh = soi, whence t = s. P

Notation A.2.5. Let F:J—-C, G:J—-C be functors, 7 : F — G. We will write
lim 7 (A.A4T)
for the equivalence class of direct limits of 7.

Proposition A.2.21. If every functor from J to C has a direct limit, there is a functor
lim :C7—-C 1.

Proof. A direct consequence of Propositions A.2.18 and A.2.19. 23
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Proposition A.2.22. Let F:J—>C be a functor. If J has a terminal object t, for j € O(J)
let f; be the unique element of J(j,t), t* = F(t), 7: F — CL° the natural transformation
defined, for je O(J), by 7; = F(f;). Then (t*,7) is a direct limit for F.

Proof. Of course (t*,7) is a direct target for F. Let (s,0) be a direct target for F. Then
o, : t* —> s and for j € O(J) we have 0; = o, 07;. If g: t* — s is such that for j € O(J)
we have o; = g o 7, then in particular o, = go 7, but 7, = F(f,) = F(id,) = id,*, so

g = Oy. Y

Definition A.2.17. Let F:A—B, G:B—C be functors. We say that G creates direct
limits for F if for every direct limit (c, 7) of GoF there exists a unique direct limit (b, o)
of F such that

e G(b)=c
e YVac O(A) 7. = G(o.).

Definition A.2.18. A direct equalizer in a category C is a direct limit for a functor

F:J—C where J is a category of type {- = -}.
Remark A.2.4. Let F:J—C where
1. OJ) = {a,b}

2. J(a,b) = {g1, 9.}

and let (e, 7) be a direct equalizer for F. Then the following diagram commutes

that is, 7. = 7, 0 F(g,) = 7 © F(g2), and if (f,0) is a direct target for F, which means
that o, = 0, 0 F(g,) = 0y, 0 F(g,), then there is a unique morphism h : e — f such that
0, = hor, and o0, = hom, So we can restate the definition of direct equalizer in the
following terms, that refer to a pair of parallel morphisms rather than to a functor. The
morphism 7 : d — e is a ditect equalizer for the pair of parallel morphisms f; : ¢ — d and
forc—dif

e jof =iof,

e for any morphism j : d — f such that jo f; = j o f, there is a unique morphism

h:e — f such that j = hou.

Proposition A.2.23. Ifi: b — e is a direct equalizer then i is epi.
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Proof. Let i : b — e be a direct equalizer for the pair f,: a — b and f,: a — b. Let
g,:e — fand g,: € —> f be such that gy 07 = g, 0. Let h = g, 01 = g, 0¢. Then
ho f, = ho f,, so there’s a unique ¢ : € — f such that h = goi. Then g, 07 = g, 07 implies
g1 = Go- %
Lemma A.2.4. Let C and D be categories, F:C—-D, G:C-D, f: F - G, g: F - G
and for each ¢ € O(C) let h, be a direct equalizer for the pair f,,g.. Then there exists a
functor EM:C—D such that for c € O(C) E*(c) = cod(h.) and for k € C(cy, cy) EM(k) is

the unique morphism such that the diagram

he,

G(c,) —=E"c))
LG(k) lEh(k)

heqy

G(c,) —=E"(c,)
commutes, and a natural transformation e’ : D — E" such that for c € O(C) e = h,.

Proof. We have

he, o G(k)of,, = h,, of,, oF(k) = h., 0g., o F(k) = h., 0o G(k) o g,

€2 €1 €2

so there is a unique morphism E"(k) : E"(c,) — E"(c,) such that h,, o G(k) = E"(k) o h,,.

Since the diagram

commutes, then E"(id.) = idgn,.

The diagram

he
G(Cl) - Eh(cl)
G(k1) N ER (k1)
G(kaoks) G(c,) —=E"(c,)
G(k2) E"(k2)
heg N
G(cs) E”(cs)

commutes, so

he, © G(ky 0 ky) = he, 0 G(k,) 0 G(ky) = E"(k,) 0 he, 0 G(k,) = E"(k,) o E"(k,) o h

€1

that is, E"(k, o k,) = E"(k,) o E"(k,).

That the morphisms h, define a natural transformation follows immediately. M
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Proposition A.2.24. Let C and D be categories, F:C —->D, G:C—-D, f: F - G,
g: F — G and for each c € O(C) let h, be a direct equalizer for the pair f.,g.. Then the

h

natural transformation e is a direct equalizer for the pair f,g.

Proof. 1f k : G — K is such that k o f = k o g, then, for each ¢ € O(C), k. of, = k. o g,
so there is a unique i, : H(c) — K(c) such that k., = i, o h,. The morphisms i, define a

natural transformation from H to K since, for a morphism j € C(c,, c,), the diagram

G(cy) b H(c,) il K(c,)
G(J’)l H(J')l ' lK(j)
Gles) =2 H(ey) —2- K(cy)

commutes because

oH(j) o he, =i, 0'he, 0 G(j) = ke, 0 G(j) = K(j) o ke, = K(j) 0%, ohe,

1
whence, since h,, is an epimorphism, i., o H(j) = K(j) o i.,. B3

Lemma A.2.5. Let 7 be an algebraic type, a € O(Alg,) and e an equivalence relation on

a. Then the following conditions are equivalent
1. The set a/e can be given an algebraic structure in such a way that the map
p:a— ale
z = [z],
is a morphism in Alg._
2. There are be O(Alg,) and f: a — b such that e = {(z,y) e a x a| f(z) = f(y)}
3. e is a subalgebra of a x a.

Proof.
Let’s prove that 1. = 2. The object a/e and the map p in 1. satisfy the conditions stated
in 2. for b and f.

Let’s prove that 2. = 3. Let w e 7,, and (z,,y;) €e for i = 1...n,. Then

Wa(f (1), f(2,,)) =
Walf (W) [(Yno)) =
= f(wathy -5 ¥ns))

fwal(zy, ... 20,))

that is (wa(21, ... 20, ), Wa(Ysy -+, Yny)) € €, but

Waxa ((:Ehyl)? R (xnwaynw» = (wa(xla e 7$nw)7wa(yl> e 7y71w))
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thus Waxa ((33'17%)7 DR (:Cno.ﬂ y”w)) €e.
Let’s prove that 3. = 1. Let w € 7, and z,,y;, € a for i = ..., n, such that [z,] = [y,] for

i=...,n,. Then (z,,y,) eefori= ... n, and waa ((z1,%), .., (T.,,Yn,)) € €, that is

(WalZyy ooy Z0y), Wa(Yay ooy Yny)) E €O [WalTyy ..oy 2,,)] = [walysy - -+, Yny,)]- This allows to
define w,o([2.1], .., [T0,]) = [wal@y, - 200)]- B¢

Definition A.2.19. Let 7 be an algebraic type, a € O(Alg.). A congruence on ais an

equivalence relation on a that is a subalgebra of a x a.

Lemma A.2.6. Let 7 be an algebraic type, a € O(Alg,). The intersection of any family

of congruences on a is a congruence on a.
Proof. Routine check. M

Definition A.2.20. Let 7 be an algebraic type, a € O(Alg,), r € r x r. The intersection
of all the congruences on a that contains r is the congruence generated by r and will
be denoted by (r).

Proposition A.2.25. Let 7 be an algebraic type, a€ O(Alg, ), r < a x a, p, the map
Pa:a— a/r)
T = (2]

Then for any morphism f:a — b such that f(x) = f(y) for each (x,y) € r there is a
unique morphism f* : a/{r) — b such that f = f* o p,.

Proof. The set

s={(z,y) caxalf(z)=fy)}.

is a congruence on a, thus {ry € s. If for z,y € a [z],, = [Y]w, then (z,y) € {r) whence
(x,y) €s, thus f(z) = f(y). This means that it is possible to define

f*:a/{y—b
[#]e, = f(2)
and f = f*op,.
If g:s/{r) — bis such that f = gop,, let u € a/{r); then u = [z],, for some z € a, so
9(u) = g([zle) = f(z) = f*([2]) = f*(w). e

Notation A.2.6. For a pair f, : a — b, f, : a — b of parallel morphisms in Alg,_ set

ro(fi, ) ={(z,y) ebxblIzea:r = f(z) Ay =g(2)}

and

r(fy, f2) = {ro(fos f2))-
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Notation A.2.7. For a morphism f:a — b in Alg_ set

eq(f) = {(z,y) eaxalf(z) = f(y)}.

Proposition A.2.26. For a pair f,: a — b, f,: a — b of parallel morphisms in Alg_
let e =r(fy, f») and
j:b—ble

x— [z]..
Then j s a direct equalizer for the pair fi, f,.
Proof. A straightforward consequence of Proposition A.2.25. M
Corollary A.2.2. In Alg_ there is a direct equalizer for any pair of parallel morphisms.

Proposition A.2.27. In Alg_ the morphism j: b — e is a direct equalizer for a pair

fira—band f,: a— b of parallel morphisms if and only if it is surjective and Coij =

b/r(fi, f2)-

Proof. Let j be a direct equalizer for the pair f,, f,. Since

i:b— b/r<f17f2)

T = [x]rm,fz)

is also a direct equalizer for f, and f,, there is an isomorphism h: e — b/r(f,, f,) and
j = hoi. Thus j is surjective and Coi(j) = Coi(i) = b/r(f,, f2).

Let j be surjective and Coi(j) = b/r(f,, f,). Then jo fi = jo f,. If h: b — f is such
that ho f, = ho f,, then let t € e; if s, € b and s, € b are such that j(s;) = j(s,), then
(s1,8,) € eq(j) = r(fr, f2), thus, since r(f,, f,) € eq(h), h(s,) = h(s,). So we can define

h:e—f
t— h(s)

where s € b is such that t = j(s). It follows that h = ' o j. If k: e — f is such that
h =koj,let y € e; then y = j(s) for some s € e, thus k(y) = k(j(s)) = h(s), so k = h'.

Definition A.2.21. Let C be a category with a null object, f € C(a,b). A cokernel of
f is a direct equalizer for the pair of parallel morphisms f and 02. We shall denote with
cok(f) any cokernel of f, and call cod(cok(f)) a cokernel object of f.

Proposition A.2.28. If C is a category with a null object 0 and f € M(C) is an epi-
morphism, then 0:°°7) is a cokernel of f. It follows that any cokernel object of f is a null

object.



22 A. Some facts on categories and limits

Proof. Let f:a — b, and let g: b — ¢ be such that go f = 02, thus go f = 0% o f;
since f is an epimorphism, this yields g = 0°, thus there is a unique 0° : 0 — c such that
g=0%00¢. M

Proposition A.2.29. If C is an ab-category with a null object and f € M(C) is such that

any cokernel object of f is a null object, then f is an epimorphism

Proof. Let f:a—b,andg: b —c, h: b— csuchthat gof = hof. Thengof—hof =
02, whence (9 —h)o f =02, g—h =0" and g = h. %
Proposition A.2.30. Let C and D be categories, F,G:C—D, H, K:D°-D®, f : F — G,

h:H — K. If the functors H(F), H(G), K(F), K(G) have direct limits respectively I"* =
(lHF,)\HF); [HG — (lHG’/\HG>; [KF — (lKFj)\KF); [KG — (lKGj)\KG); the diagram

lim [H(f),1HF [HG)
lHF — lHG

lim [hp,/HF [KF] L llim [hg,HG IKG]
- lim [K(f),[KF IKG] -
1¥F — lKG

commutes.
Proof. For each ¢ € O(C) we have

lim [K(F), 157, 5] o lim [y, 1%, 757] 0 N = Tim [K(F), IF, 7] 0 AS" o (hy), =
= A% o K(f)e o (he). =
= A7 o (he)e o H(f), =
— lim [h, 17, 5%] 0 N6 o H(f), —
— lim [he, ", 5] o lim [FI(f), 1", 1] o AI®

whence the thesis follows. M

Theorem A.2.1 (Construction of direct limits by direct products and binary
direct equalisers). For categories C, D, if D has binary direct equalisers and every
functor from O(C)* and from M(C)* to D has a direct product, then every functor from
C to D has a direct limat.

In particular, let F*:O(C)*—>D be defined by

F'(c) = F(c) (A.48)
and F2:M(C)*—D by

F?(u) = F(dom(u)); (A.49)
let fi, fo: []F? — []F" be defined by

e = L™ forue M(C) (A.50)
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and
it F(w) = £ for ue M(C) (A.51)

and let (e, k) be a direct equalizer for f, and f,, and

m. = kill™ for ce O(C). (A.52)

Then there is a natural transformation € : F — CSP such that for c € O(C) €, = m, and

(e,€) is a direct limit of F.

Proof. As shown in the commutative diagram

2
F?(u) e (A.53)
Z‘UF2l w)
f1
[[F? ——=][F"
2
ZHFQT ]ZH)dF(lu)
F* (1) — 2 F (cod u)

for u € M(C) both A and F(u)z”ogl factor uniquely through ilI¥* so there are fi, f,
such that

e, = il (A.54)
and
i F(u) = fll™ (A.55)

for each u e M(C).
If ve C(c,,c,)

me,F(v) = kil F(v) = k foill™ =k f,ill" = kdll™ = m (A.56)

€2 €1

so there is a natural transformation e : F — CSP such that for ¢ € O(C) €. = m,, and
(e, €) is a direct target of F.

If (t,7) is another direct target for F then 7 as a natural transformation in D™ factors
through v,° " for a unique morphism & : LIF* — t, as F coincides with F* on the objects.
But 7 is also a natural transformation in D€, so for each v : ¢, — ¢, we have 7., = 7., F(v)

and thus
T., = th = hfill™ = 7, F(v) = higFlF(v) — hfyill™ (A.57)

whence hf, = hf,. Thus h factors uniquely through k£ and 7 factors uniquely through
€. e
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A.2.2 Inverse limits

Definition A.2.22. Let F:J—C be a functor. An inverse target for F is an arrow

from the diagonal functor AS to F.

Remark A.2.5. According to this definition, an inverse target for the functor F:J—C is
a pair (c,7) where c € O(C) and 7 is a natural transformation 7: C. — F. That is, for
je 0), ,:¢c — F(j), and for any j, € O(J) and j, € O(J) and any g : j, — j, the

diagram

(A.58)

C
Tj2 &1\
—F()

. F(g)
F(j,)
commutes.

Definition A.2.23. Let F:J—C be a functor. An inverse limit for F is a universal

arrow from the diagonal functor A to F.

Definition A.2.24. If (c,7) is an inverse limit for the functor F, then c is an inverse

limit object for F and 7 is an tnverse limit cone for F.

Remark A.2.6. According to this definition, am inverse limit for the functor F:J—C is an
inverse target (c,7) for F such that if (c*, 7*) is any inverse target for F, there is a unique

morphism f : ¢* — ¢ such that 7# = 7o [ f], that is the diagram

C.——~F (A.59)

i

Cex

commutes. More in details, for any j, € O(J) and j, € O(J) and any g: j, — j, the

diagram
. FG) (A60)
le
Tiy
c*—f—c F(g)
Tig
T*
J2 R
F(j.)
commutes.

Proposition A.2.31. Any two inverse limits for a functor are isomorphic.

Proof. A direct consequence of Proposition A.2.15 M
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Notation A.2.8. We will write
lim F (A.61)
for the class of isomorphism of the inverse limit of the functor F.

Proposition A.2.32. Let F:J—>C be a functor. If J has an initial object i, for j € O(J) let
f; be the unique element of J(i,j), i* = F(i), and 7 : Cix — F the natural transformation
defined, for je O(J), by 7; = F(f;). Then (i*,7) is an inverse limit for F.

Proof. Of course (i*,7) is an inverse target for F. Let (s, o;) be an inverse target for F.
Then o,: s — i* and for j € O(J) we have o; = 7,00,. If g:s — i* is such that for
j € O(J) we have o; = 7; 0 g, then in particular o, = 1, 0 g, but 7, = F(f;) = F(id,) = id;*,
SO g = 0. e

Definition A.2.25. Let F:A—B, F:B—C be functors. We say that G creates inverse
limits for F if for every inverse limit (c,7) of G o F there exists a unique inverse limit
(b,o) of F such that

e G(b)=c
e YVac O(A) 7, = G(o,).

Definition A.2.26. An inverse product in a category C is an inverse limit for a functor

F:I-C where I is a discrete category.

Notation A.2.9. The isomorphism class of inverse products for the functor F will be noted
by

[ [F-

Remark A.2.7. Being a discrete category essentially a set, a functor having a discrete
category as its domain can be described as a collection of objects in the codomain

category. Thus (c;)._, means that the c; are objects of a category, say C, I is a set, and

et
there is a functor, say F:I*—C, such that ¢; = F(i) for each i € L.

A natural transformation between two collections of objects (c,),, and (d,),_, of the same
category is just a collection of morfisms (f;),, such that f; : ¢; — d; for each i € I.

An inverse product of (c,), is a pair (p,7), where p € O(C) and 7 = (7;),_, is a collection
of morphisms 7; : p — ¢;, such that for any pair (q,0) where q € O(C) and ¢ = (0,),,
with o; : q — c;, there is a unique morphism f : q — p such that o; = 7, 0 f for each i € 1.
Using this notation the isomorphism class of inverse products for the collection (c;),_ , will
be noted by

[T

i€l
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and 7 is a natural transformation between (c,),, and (d,),_, then its inverse limit relative

to (p,m) and (r, p) is a morphism ¢ : p — r such that 7, o m; = p; o 7 for each 7 € I.

Remark A.2.8. In Set, a collection (A4,),, has always an inverse product (] [,.; Ai, p) where
[ [, Ai is the usual cartesian product of the sets A; and p = (p,),, is the collection of the
projections onto the factors A;. That is, [ [,.; A; is the set of maps

fF1=JA

el
such that f; € A; for i € I; such an element of [ [, A; is usually written as (f;),_; and
pj : 1_[ Az - Aj
i€l
(fi)iel i f]'

It is easily verified that (] [,; 4s, (p:),.,) has the required properties for an inverse product
of (4,),, in Set.

Proposition A.2.33. Let I be a set, C a category with inverse products, and ¥ :1* x [*—C.
Forie I set F,:I*—~C by F,(j) = F(i,5) for (j € I), and (m,,0,) € [ [F;. Set F':I*>C as
F'(i)=m foriel and let (a,7) € [[F. Set p: CI"<""¢  F defined for (i,j) € I x I by
Pigy = (0:);Ti.

Then (o, p) € [ [F.

Proof. Let (B, ) € [ [F. It will suffice to show that p factors through p.

Forie Isete,: C"° — F, defined for j € I by (£,); = i ;). Then each ¢, factors uniquely
through o,, €, = 0,p,. Since each o; : Cg*’c — C! *C is a natural transformation between
constant functors, it is a constant natural transformation, that is there is a morphism
¢, : B — m such that (p,); = ¢, for j € I, and these morphisms define a natural transfor-
mation ¢ : Cg*’c — F" which factors uniquely through 7, b’ = 7k, where k : Cg*’c — Qe
is also a constant natural transformation, so there is k' : § — «a such that k, = k" for i e I.
Thus h, = 7,k for each i € I, and (k) = (0,),7,k', that

), = 7.k for each i,j € I, thus (g,)
is, u = p’ykl,*”*’c. 53

J

Definition A.2.27. An inverse equalizer in a category C is an inverse limit for a

functor F:J—C where J is a category of type {- =3 -}.
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Remark A.2.9. Let F:J—=C where
1. O(J) ={a,b}

2. J(a,b) = {91, 9}
and let (e, 7) be an inverse equalizer for F. Then the following diagram commutes

F(T) 9 (b

F(g2)
/

that is, 7, = F(¢,) o 7. = F(g,) o 7, and if (f,0) is an inverse target for F, which means
that o, = F(g,) 0 0. = F(g,) 0 0., then there is a unique morphism h : f — e such that
0. = T.oh and 0, = 7, o h. So we can restate the definition of inverse equalizer in the
following terms, that refer to a pair of parallel morphisms rather than to a functor. The

morphism 7 : € — ¢ is an inverse equalizer for the pair of parallel morphisms f; : ¢ — d

and f,:c—dif

o floi=f,01

e for any morphism j: f — c such that f, oj = f, o j there is a unique morphism
h: f — e such that j =70 h.

Proposition A.2.34. Ifi: e — a is an inverse equalizer then i is monic.

Proof. Let i : e — a be an inverse equalizer for the pair f, : a — b and f, : a — b. Given
a morphism g : f — e, for h =i 0g also f, o h = f, o h holds, so g is the only morphism
such that h =i0g. Thenio g, =io g, implies g, = g,. ey

Lemma A.2.7. Let C and D be categories, F:C—-D, G:C-D, f: F - G, g: F - G and
for each c € O(C) let h, : d, — F(c) be an inverse equalizer for the pair f.,g.. Then for

any morphism k : ¢, — ¢, there is a unique morphism k - d., — d., such that the diagram

hey
dcl - F<C1)
kt F(k)
hes
d., — F(c,)
commutes, that is h,, ok = F(k)oh,, . In particular for each c € O(C), id, = id,,, and for
each pair of composable morphisms k, : ¢, —> ¢,, ky : ¢, —> ¢35, ky ok, = kyok,.

Proof. We have

f., oF(k)oh,, = G(k)of, oh, = G(k)og., oh. =g.oF(k)oh,,
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so there is a unique morphism & : d., — d., such that F(k) o h,, = h,, o k.

Since the diagram

d, —l= F(c)
iddC lidF(c)

d. —F(c)

commutes, then id, = id,,.

The diagram

dCl F(Cl)
&{ F(k1)
he
d., —=F(c,) F(kooky)
ko b F(k2)
d., 2 F(cs)

commutes, so

o/_glzhC o

F(k,ok,) o h, = F(ky) o F(ky) o he, = F(k,) o he, ok, ok,

c1
that is, ky, o ky = k, 0 k. M

Proposition A.2.35. Let C and D be categories, F:C—-D, G:C—-D, f: F - G,
g: F — G and for each c € O(C) let h, : d. — F(c) be an inverse equalizer for the pair
f.,g.. Then there is a natural transformation h: H — F that is an inverse equalizer for

the pair f,g and such that h, = h,.

Proof. That the functor H exists, and that h is a natural transformation, is stated by
Lemma A.2.7. Let’s prove that h is an inverse equalizer for f, g. If k : K — F is such that
fok = gok, then, for each c € O(C), f, ok, = g, ok, so there is a unique i, : K(c) — H(c)
such that k, = h, oi.. The morphisms i, are the component of a natural transformation

from K to H since, for a morphism j € C(c,, c,), the diagram

ic he,

K(c,) —=H(c,) —=F(c,)

K(j)l H(J‘)J LF(j)
, he,

lc

K(c,) —=H(c,) —=F(c,)
commutes because

h., oH(j) oi.,, = F(j)oh,, oi,, =F(j) ok, =k, oK(j) =h

€2 €1

whence, since h,, is a monomorphism, H(j) o 4., = i., o K(j). M
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Notation A.2.10. For a pair f, : a — b and f, : a — b of parallel morphisms in Alg_ let
s(f1, f») be the subalgebra of a defined by

s(fi, o) = {zeal filx) = fal2)} . (A.62)

Proposition A.2.36. For a pair f, : a — b and f, : a — b of parallel morphisms in Alg._
let e = s(f1, f») and

1:e—a
(A.63)

T — T.
Then 1 is an inverse equalizer for f, and f,.

Proof. Of course f,o0t = f,01. If 7: d — aissuch that fioj = f,07 then Imgj S e. Let

h:d—e
t j(t).
Then j =ioh. If j =i0g, for t € d we have j(t) =i(g(t)) = g(t) so g = h. o

Corollary A.2.3. In Alg._ there is an inverse equalizer for any pair of parallel morphisms.

Proposition A.2.37. In Alg_ the morphism j: d — a is an inverse equalizer for a
pair f, :a — b and f,: a — b of parallel morphisms if and only if it is injective and
Img j = s(fi, f2).

Proof. Let j be am inverse equalizer for the pair f,, f,. Since

(2 S(f17f2) —a

Tr+—T

is also an inverse equalizer for f, and f,, there is an isomorphism h:d — (f,, f,) and
j = hoi. Thus j is injective and Img(j) = Img(i) = s(f, f2)-

Let j be injective and Img j = s(fi, f,). The latter implies f,0j = f,oj. If k: f — ais
such that f, ok = f,ok, let z € f and u = k(z), so f,(u) = f,(u), that is u € Img(j), so
there is a y € d such that u = j(y). This defines g : f — d such that k = j o g. If also
k = joh then g = h, since j is injective. ey

Definition A.2.28. Let C be a category with a null object, f € C(a,b). A kernel of f
is an inverse equalizer for the pair of parallel morphisms f and 02. We shall denote with
ker(f) any kernel of f, and call dom(ker(f)) a kernel object of f.

Proposition A.2.38. If C is a category with a null object and f € M(C) is a monomor-
phism, then any kernel object of f is a null object.
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Proof. Let f:a — b, and let g: ¢ — a be such that fog = 0f, thus fog = f o0
since f is a monomorphism, this yields g = 0¢, thus there is a unique 0f : ¢ — 0 such that
g =0200;5. M

Proposition A.2.39. If C is an ab-category with a null object and f € M(C) is such that

any kernel object of f is a null object, then f is a monomorphism

Proof. Let f:a— b,andg: c — a, h: c— asuchthat fog = foh. Then fog—foh = 0,
whence fo(g—h)=0{,g—h=0°¢and g = h. M

Theorem A.2.2 (Pointwise construction of inverse limits in functor categories).
If every functor from J to D has an inverse limit then for every C every functor from
J to D€ has an inverse limit. Precisely, let ¢:J—DC. For c € O(C) define the functor
Y. :J—D by

be(j) = 0(i)(c) for je OJ) (A.64)
Ve(f) = &(f)e for [ e M(J) (A.65)

and suppose (1., wc) is an inverse limit for 1,. Then (A,~y) is an inverse limit for ¢, where
the functor A:C—D is defined by

Alc) = L. (A.66)

and for f : ¢, — ¢, A(f) is the limit of the natural transformation Q(f) : V., — ., defined
forje O(J) by

Q(f); = () (f), (A.67)

and the natural transformation ~ : CI°° — ¢ is such that for j € OJ) v : A — ¢(j) is
the natural transformation defined for c € O(C) by

(W)e = (me);- (A.68)

Conversely, if (A,~) is an inverse limit of ¢:J—D€ then for c € O(C) (A(c), ), where
7. are defined by A.68, is a limit of 1. as defined by A.64 and A.65.

Proof. Let us show that for c € O(C) 1), is indeed a functor.
If j € O(J) we have

Ve(id;) = #(id;)e = (idyg)), = idoge) = idyeg) (A.69)

and for composable arrows g and f in M(J)

be(go f) = d(gog)e = ¢(g)c 0 d(f)e = Ye(f) 0 1he(g)- (A.70)
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Now to prove that A is a functor from C to D we need to prove first that for f: ¢, — c,
Q(f) : Yo, — 1., is indeed a natural transformation.

For j,,j, € O(J) let h: j, — j,. We have to prove that the diagram

G G 2 5) (AT1)

wcl (h)L 1/1':2 (h)
.\ QN .
,l7b02 (.]2) E wCQ (.]2)

commutes, which it does because it can be rewritten as

?(j1)(c,) —= 0(j.)(c,) (A.72)

and this commutes because ¢(h) is by definition a natural transformation from ¢(j,) to

¢(Ja)-
Now for c € O(C) and j € O(J) we have

Qide); = () (ide) = idye) = idye (A.73)
thus

Q(id,) = id,, (A.74)
and

A(id,) = idy - (A.75)

For composable arrows ¢g and f in M(C) and j € O(J)

Qgo f);=9()(go f) =0()(g) o d()(f) = 2(g); 0 QS); (A.76)

Qgo f) =Q(g) o QS) (A.T7)
and

Algo f) = A(g) o A(S). (A.78)

Now let us show that for j € O(J) 7; : A — ¢(j) is a natural transformation.
Let ¢,,c, € O(C) and h : ¢, — ¢,. Then the diagram

(A/j)cl

Afcy) o(j)(c,) (A.79)
A(f) @) (f)

Ales) 222 (5) (c)
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commutes because this is just the definition of A(f) as inverse limit of Q(f).
Now let us show that ~: CSP° — ¢ is a natural transformation. For j,,j, € O(J) and
h:j, — j, the diagram

Vi1

A—=¢() (A.80)

Vio

commutes because for ¢ € O(C) this diagram specifies as

(451)

¢) —6(3,)(c) (A81)

Ale) =24 (jr) (A.82)

So (A, 7) is a target for ¢. Let (A',7") be another target for ¢. Then
v Ci’,DC — ¢ (A.83)
is a natural transformation, and for j € O(J)

BN - 6() (A.84)

/

is also a natural transformation. Define for ¢ € O(C) 7, : Ci’,l(jc) — . by (m.); = ().

Then 7. id a natural transformation. In fact, for f : j, — j, the diagram

/
(7e)jq
—_—

A'(c) be(ir) (A.85)

(ﬂ'c)jg

,QDC (J2)
commutes because it can be rewritten as

('7_;1 )e

A(e) —=¢(j:)(c) (A.86)

\ lw)c
(%, )e

Y 6)(e)
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and
/ 7_;1 .
AN —=¢(j,) (A.87)
, lw)
Tia .
¢(J2)
commutes.
Thus for ¢ € O(C) there is a unique 7, : A'(c) — A(c) such that the diagram
J,D ”/c
O (N (A.88)
5o l /
Tne e
Cio
commutes, that is the diagram
oy T
A(e) —=v.() (A.89)
e
l (me);
Ac)
commutes for j € O(J), which can be rewritten as
Lo e
A(c) —=o(j)(c) (A.90)
U
l (V5)e
Ac)

Let’s prove that the 7, define a natural transformation n: A" — A. Let ¢,,c, € O(C) and

f : ¢, = c,. Since each v; is a natural transformation we have that for j € O J the diagram

/
(7j )01
—_—

A(cy) o) (ci)
A (f/)l (73)62 . l¢>(j)
A (C2) - ¢<.])(c2)

commutes, which can be rewritten as

’
(ﬂ'cl )J
- s

A(ey) e, ()
A/(f)l jﬂ(f)j

(Tey)s

A/ (C2> e % (J)

(A.91)

(A.92)
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thus also the diagram of natural transformations

CJ,ID ey wq (A93>

cp 2y
A (e9) ©2

commutes. Set

e=Q(f)om, = Wczvz;a). (A.94)

— Ci(o,) such

Then ¢ : Ci’,’? o 1., so there is a unique natural transformation o : CJ’,](D :
cy A (e

that ¢ = 7., o 0. But

D

Mes © ity O Vi (py = Tes © Vaicpy = € (A.95)

and, since A(f) is a limit of Q(f)

’

ey OVa(h © Vo = Q)T v = Q(f)m, = ¢ (A.96)

thus
J,D JD _ _JD J,D
Tnes © Vi) = VAl © Yy (A.97)
that is the diagram

Ny

N(e) - Aley) (A.98)
A(f) jA(f)

Nlco

AI(C2) —A(c,)

commutes, and 7 is a natural transformation.
Thus for j € O(J) the diagram

N —29()) (A.99)
HJX%

commutes, and so does

/
c v

ChP——9¢ (A.100)

J3,D€
Tn o

J,DC
Ci
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Now suppose 7 : A" — A is also such as the diagram

’

CIP ¢ (A.101)

,‘/J,DC
7], Y

3,DC
C1

C

commutes. Then for ¢ € O C the diagram

’
e

Ci”i) —— 1), (A.102)
| A

J,D
CA(C)

commutes, and since 7, is uniquely determined this yelds 7, = 7. for ¢ € O(C), and so
N =n.

Now suppose (A, ) is an inverse limit of ¢. For ¢ € O(C) the functor 1. has a limit, so
we can construct a limit (A',7") of ¢ such that (A'(c),n.) is a limit of ¢.. Then there is

a natural isomorphism i : A* — A such that v = yo %-J’DC, and so m, = m, 07", and
(A(c), m.) is a limit of 9. M

Proposition A.2.40. Let C be a category. For every ¢ € O(C) the hom-functor C(c, —)

preserves inverse limits.

Proof. Let F:J—C and (1, \) an inverse limit of F. Let’s show that (C(c,1),C(c,p)) is an
inverse limit of C(c, F—).

Of course (C(c,1),C(c, pt)) is an inverse target of C(c,F—).

Let (X,7) be an inverse target of C(c,F—), so 7: C%5* — C(c,F—). If f e J(i,j)
then 7; = C(c,F(f))7, so for 2eX 7;(x)=F(f)7:(x), which implies that the 7;(x) are the
components of a natural transformation 7 : C2° — F, and (c,7%) is an inverse target of

F. Thus there is a unique morphism f*: c¢ — 1 such that 7* = ;w;;cc. The morphisms f*
define a morphism f : X — C(c,1) by f(x) = f7, and for j € O(J) we have 7; = C(c, ;) f

ral J, Set

and finally 7 = C(c, p)v;
If g: X — C(c,1) also is such that 7 = C(c, p)y,"5* then for j € O(J) we have 7; = ji;9

and for x € X 7,(z) = p;9(x), so g = f. M

Lemma A.2.8. If a functor F preserves inverse limits and G is naturally isomorphic to

F then G also preserves inverse limits.

Proof. Let F:C—D, H:J—-C, (1,\) a limit of H, suppose that F preserves inverse limits

and that ¢ : F — G is a natural isomorphism.
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Let (m,p) be an invesre target of GH. Then for j € O(J) ¢t € D(m, FH()), thus,

since F preserves inverse limits, there is a unique morphism f € D(m, F(1)) such that
Puts = FAS. (A.103)

Set g = ¢f. Then g € D(m,G(1)) and G\;g = G\ f = dupFNf = i, whence pu =
GAy, P

If h e D(m, G(1)) is also such that p = GAy;"®, then for j € O(J) FAi¢'h = ¢!, GA\h =
Puiyty- Since f is the unique morphism satisfying Eq. A.103, ¢;'h = f and h = ¢,f =
g- X

Corollary A.2.4. A representable functor preserves inverse limits.

Proof. Straightforward from Proposition A.2.40, Lemma A.2.8, and the definition of rep-

resentable functor. W

Theorem A.2.3 (Inverse-completeness of Set). IfJ is a small category then every functor

from J to Set has an inverse limit (17, \¥) where

I" = Set” (C}5*, F) (A.104)

and for je O(J), Tel”
Ay (1) = 73(0). (A.105)

Proof. Since J is a small category Set’(C{;}**,F)eO(Set).
Let’s show that A¥ is a natural transformation. If fe J(i,j) then for 7€ 1", since 7 is a

natural transformation
A (1) = 73(0) = F(f)7(0) = F(f)N (7) (A.106)

thus A = F(f)A].
Let’s show that (1", \") is a universal arrow.
If ceSet” (C45, F) let for zeX o”eSet’ (C;*, F) defined for je O(J) by 07(0) = oy(z).
Tus we have a map
h:X — Set’(C/** F
(Cio™ ) (A.107)

x

r— 0

such that for reX and je O(J) A[(h(z)) = A(07) = 07(0) = o5(x), thus A[h = o;.
If also k: X — Set?(C;*",F) is such that Ak = o5 for je O(J), then for je O(J) and
reX X (k(z)) = k(x);(0) = 0;(x) = 07(0), thus k(z) = 0 and k = h. P
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A.3 Pullbacks and pushouts

Definition A.3.1. A pulllback is a limit of a functor F:C—D where
e O(C)={cy,...,c,,d}

e M(C)={f,..., f.} where f,:c, —d.

Remark A.3.1. If (p,m) is a pullback of F:C—D then for i = 1,...,n m7y = F(f.) o7, so
a pullback equalises all the morphisms F(f,) o 7. If (p’,7') is also a pullback of F then
there is a unique h : p’ — p such that 7' = m o, ".

It can be useful to refer to a pullback of a finite set of morphisms. If for i = 1,...,n

fi : ¢, > d are morphisms of a category C with a common codomain, then (p,m,...,7,)
is a pullback of f,,..., f, if

o fiom,=fomfori=1,...,n,j=1,...,n

e if (p',m,...,m,) is such that f,om = fjo7r;. fori=1,...,n,7 =1,...,n then there

3
/

is a unique h: p' — p such that 7. = m,oh fori=1,...,n

k3

Likewise, it can be useful to say that a diagram like

p—sb (A.108)
[
c—2~d

is a pullback, meaning that (p, h, k) is a pullback of f, g.

Lemma A.3.1. A morphism f :a — b is a monomorphism if and only if the diagram

a—2 g (A.109)

idal f
f
a—-=Db

s a pullback.

Proof. Just a check. e

Proposition A.3.1. If a category has binary inverse products and inverse equalisers then

it has pullbacks.

Proof. Let f,:a;, — b, f,: a, — b, p, and p, the projections from a,lla,, and k£ : e —
a,lla, an inverse equaliser of fip,, fop,. Let’s show that (e, p,k, p,k) is a pullback of fi, f..
Of course fip.k = fop.k. If h, : d — a,, h, : d — a, are such that f,h, = f,h, then there
is b : d — a,Ila, such that h, = p,h’, h, = p,h and fip,h' = fih, = f,h, = f.p.h' so there
is h : d — e such that A" = kh and thus h, = p,kh, h, = p.kh.

If h*:d — e is also such that h, = p,kh*, h, = p,kh*, then h' = kh*, because h' is

uniquely determined, and h* = h because the factorisation of A through k is unique. X
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Proposition A.3.2. If a category C has binary pullbacks then every natural transforma-

tion T in C is a monomorphism if and only if 7, is a monomorphism for every c € O(C).

Proof. Let F,G:B—C, and 7 : F — G. By Theorem A.2.2 C? has binary pullbacks, and
by Lemma A.3.1 the diagram

(A.110)

F(c) 1 p(e) (A.111)

is a pullback in C, so by Lemma A.3.1 7, is a monomorphism.
Conversely, if for every ¢ € O(C) 7, is a monomorphism, then for every ¢ € O(C) the

diagram A.111 is a pullback, and so is diagram A.110 and 7 is a monomorphism. 3

A.4 Preorders

Definition A.4.1. A preorder P is a category such that for any pair of objects p,, p, of

P there is at most one morphism from p, to p..

Notation A.4.1. If P is a preorder and p,, p, are objects of P such that P(p,,p,) # JJ,

we will write

P: < D2 (A.112)

If p; < p, we will denote with

{(p:, P2) (A.113)

the unique element of P(p,, p,). If F:P—C is a functor and p, < p, then we will set

Frt = F((p,, p2))- (A.114)

Definition A.4.2. A preorder P is directed if for any pair of objects p,, p, of P there is
an object q of P such that p;, < q and p, < q.

Lemma A.4.1. Let P be a preorder, F:P—Set a functor and (t,7) a direct target for F
such that
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(1) VtetIpe O(P):teIm(r,) 77777

(2) Vp, € O(P) Vp, € O(P) Vt, € F(p,) Vt, € F(p,)
To (1) = T, (ts) = 3qe O(P):p, < qAp: < qnFRi(t) =Fr2(t,).

P1 P2

Then (t,7) is a direct limit for F.

Proof. Let (s,0) be any direct target for F. If ¢ € t, then by (1) ¢ = 7,(s) for some object
p of P and some element s of F(p). We will show that o,(s) depends only on ¢, that is, if
t = 74(u) also holds for some object q of P and some element v of F(q), then o (u) = o,(s).

Indeed, by (2) there is an object r of P such that p < r, q < r and F?(s) = F%(u), so
0q(u) = 0.(FY(u)) = 0.(F(s)) = 0, (s). (A.115)
Then we can define a morphism in Set

:t—s
d (A.116)
t— 0,(s)
where p and s are any object of P and any element of F(p) such that ¢ = 7,(s). If p
is any object of P then by the very definition of f we have o, = for, Ifg:t — s
is any morphism in Set such that, for any object p of P, 0, = g o 7, holds, then for

t € t such that ¢t = 7,(s) for some object p of P and some element s of F(p) we have
9(t) = g(7a(s)) = 0,(s) = (1), that is, g = f. P

Proposition A.4.1. If P is a directed preorder for any functor F:P—Set there is a direct
target for F which satisfies conditions (1) and (2) of Lemma A.j.1.

Proof. Let

to= | {p}xF(p). (A.117)

peO(P)

On the set t, define the relation ~ by:
(P1,51) ~ (P2,5:) = 3qeO(P) :p, < qA P, <qAF(s) =F(s,). (A118)

Then ~ is an equivalence relation .

Indeed, it is clearly reflexive and symmetric. Suppose (p;, ;) ~ (P2, ) and (p,, S,) ~
(Ps, S3)- Then there are objects q, and q, of P such that p;, < qi, p, < qi, P> < Qo,
Ps < q, and FP!(s,) = FP2(s,) and FP2(s,) = F¥(s;). But since P is directed there is
r such that q, < r and q, < r, and F?i(s,) = Fa1(FPi(s,)) = Fi(FP2(s,)) = Fr2(s,) =
Fi(Fr2(s,)) = FE(Fr3(s;)) = Fr3(s;), so ~ is transitive.

Let t =t,/ ~. For pe O(P) set

7, F(p) >t

p

(A.119)
s+ [(p,s)].
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If p,q are objects of P and p < q, and s € p, then

7a(F2(5)) = [(a, F5(s))]

and

7p(s) = [(p, 5)] -

But F*(s) = F3(F?(s)) whence [(q,F2(s))] = [(p,s)] and 7, = 7, 0 F?, s0 (t, 7) is a direct
target for F.

If t € t then t = [(p, s)] for some p € O(P) and some s € F(p), so t = 7,(s).

If ,(s) =

q

(u) for some objects p,q of P and some s € F(p) and u € F(q), then
[(p,s)] = [(q,u)], which means that there is r € O(P) such that p < r, q < r and
Fr(s) = Fa(u). M

Corollary A.4.1. If P is a directed preorder every functor F:P—Set has a direct limat.

Proposition A.4.2. If P is a directed preorder, a direct target (t,7) for the functor
F:P—Set is a direct limit if and only if it satisfies conditions (1) and (2) of Lemma
A1,

Proof. In Lemma A.4.1 was already proved that a direct target (t,7) for F satisfying (1)
and (2) is a direct limit for F.

Suppose that (t, 7) is a direct limit for F. By Proposition A.4.1 there is a direct limit (1, \)
for F which satisfies (1) and (2). Let f : 1 — t be the unique bijection such that for every
peOP) 1, = fol,.

Let t € t. Then t = f(I) for some [ € 1, and [ = A, (s) for some p € O(P) and some
s € F(p), sot = T,(s).

Let p e O(P), q € O(P), u e F(p), v € F(q) such that 7,(u) = 7,(v); then f(A,(u)) =
f(Ap(v)) whence A (u) = A,(v); so there is r € O(P) such that p < r, q < r and
Fr(u) = Fa(v). M

Definition A.4.3. Let P be a directed preorder, F:P — Set a functor. We call the
standard direct limit of F the direct limit constructed as in Proposition A.4.1 by
(A.117), (A.118) and (A.119).

Proposition A.4.3. The forgetful functor U: Grp — Set creates direct limits for any

functor from a directed preorder.

Proof. Let P be a directed preorder, F:P—Grp and H = UoF. Let (s, 7) € lim H. For z,
and z, in s let x, = 7,,(s,), ¥, = T,,(s,) for p, € O(P), p, € O(P), s, € F(p,), 5, € F(p,).

P1

If g € O(P) is such that p, < q and p, < q, let’s show that 7, (F?(s,)F?2(s,)) does not
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depend on ¢. Let q, € O(P) such that p, < q, and p, < q,, and q, € (’)(P) such that
p: < q, and p, < q,. Then there is r € O(P) such that q; < r and q, < r, so

Tay (Fa} (50)F 2 (52)) F

m(F (Fg (s)Fg (s2))) =
FR(EG (s0)F (F2(s2))) =

(F(
(F(
(F (50)Fr2(s52)) =
(e (
(F2(

[
oy

S1

[
N

)
)
(
Fr2(Fg (s0)) 2 (Fg2(s2)) =
F(Fg (s)Fg (s2))) =

ae (Foy (50)F G2 (52))

I
o

I

Tr

T

Let’s prove that 7,(FP1(s,)F?2(s;)) with p, < q and p, < r does not depend either on
P:, P> and sy, S,.

If also z, = 7,,(t,), ®, = 7,,(t,) for o, € O(P), 0, € O(P), t, € F(0,), t, € F(0,), then
there is g € O(P) such that 0, < q, 0, < q, p; < q, P < q and F2(t,) = FPi(s)),
FZQ (t,) = F? (55), so Tq<F21 (tl)ng (ts)) = Tq(le<31)F22 (52)).

For z, and z, in s we can now define their product z,z, = 7,(F?'(s,)F?2(s,)) where p,, p,

are objects of P and s, € F(p,), s, € F(p,) such that z, = 7,

P1

(s,) and x, = 7,,(s,), and q
is an object of P such that p; < q and p, < q.
If also x5 = 7,,(s;) then for q such that p, < q, p. < q, p;s < q

T, (T,25) = Tq(FZI(51)<F§2(52)F23(53))) =
o(F5 (50)F52(s,))F5e(s5)) =

= (r,1,)x;.

If e, is the unit element of P(q), then let x = 7,(s) and r € O(P) such that q < r and
p < 1; we have 7(eq)z = 7.(F(e)F7(s)) = mo(e.F2(s)) = 7o(F2(s)) = 7(s) = z. So 74(eq)
is the unit element e, of s, for any object q in P.

o(5571) = 7(ep) =

If z = 7,(s), and e, is the unit element of P(p), then z7,(s7!) = T, e
and 7,(s )z = 7,(s71s) = 7,(e,) = €, 50 T, (s71) =27 N

Proposition A.4.4. The forgetful functor U: Alg. — Set creates direct limits for any

functor from a directed preorder.

Proof. Under construction. M

Definition A.4.4. Let P be a directed preorder, F:P— Alg_ a functor, U: Alg_—Set
the forgetful functor for Alg_. We call the standard direct limit of F the direct limit
a such that U(a) is the direct limit of Uo F in Set constructed as in Proposition A.4.1 by
(A.117), (A.118) and (A.119), given the algebraic structure 7 as in Proposition A.4.4.
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Proposition A.4.5. If P is a directed preorder, a direct target (t,7) for the functor
F:P—Alg_ is a direct limit if and only if it satisfies conditions (1) and (2) of Lemma
A1,

Proof. Obvious. M

Lemma A.4.2. Let P be a directed preorder, F:P—Set. If (g,7) is a direct limit for F
then:

1. fory e g there are p € O(P) and s € F(p) such that y = 7,(s);

2. if for p, € O(P), p, € O(P), s, € F(s,), 5, € F(8,) 75,(51) = Vp,(52) then there is
q € O(P) such that p, < q and p, < q, and FP1(s,) = Fr2(s,).

Proof. Let (f, ¢) be the standard direct limit of F. There is an isomorphism ¢ : f — g such
that for pe O(P) io ¢, = 7,.

Let = € f such that y = i(z). Since (f,¢) is the standard direct limit of F there are
p € O(P) and s € F(p) such that x = ¢,(s), thus y = i(d,(s)) = 7,($).

If 75, (81) = Yp,(82) then i(ep, (s1)) = i(Pp,(s2)), thus ¢y, (s1) = @p,(s,). Since (f, ) is
the standard direct limit of F there is q € O(P) such that p, < q and p, < q, and
Fri(s,) = Fr2(s,). X

Proposition A.4.6. Let P be a directed preorder, F and G functors from P to Set, 7 a
natural transformation from F to G such that, for each p € O(P), 1, is injective. Then

any direct limit of T is injective.

Proof. Let 7 be the direct limit of 7 relative to the direct limits (f,¢) of F and (g,~)
of G. If , € f and x, € f are such that 7(z,) = 7(z,), by Lemma A.4.2 there are
p. € O(P), p, € O(P), s, € F(p,), s, € F(p,) such that z, = ¢, (s1), ©, = ¢, (5.), then
Yor (To, (81)) = Vo, (Tp,(52)) s0, again by Lemma A.4.2, there is p € O(P) such that p, < p,
p. < p and G®i(7,,(s1)) = GP(7,,(s5)), whence 7, (F®i(s,)) = 7, (F?2(s,)); since 7, is
injective, F®1(s,) = FP2(s,), whence z, = z,. M
Proposition A.4.7. Let P be a directed preorder, T an algebraic type, E,F, G functors
from P to Alg_ with direct limits (e,€), (f,0), (g,7); «, 8 natural transformations from
F to G, § a natural transformation from E to F such that, for each p € O(P), 9,
inverse equalizer for oy, and B,. Let 0* = lim [0, (e,€), (f,¢)], o* = lim [a, (f, ¢), (9,7)],
B* = lim B, (f,¢),(g,7)]. Then Img(6*) = s(a*,B*). In particular, 6* is an inverse

equalizer for o*, 5*.

18 an

Proof. Let t € §*(e). Then t = 6* (¢,(s)) for some p € O(P) and some s € E(p), that is
t= ¢p (610(8))7 S0

a*(t) = a(9p(05(5)) = % (@ (0:(5))) = 7(Bo(05(s))) = 5%(05(0,(s))) = 57(¢)
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that is, t € s.
Let t € s. Then t = ¢,(s) for some p € O(P) and some s € F(p), and a*(¢p,(s)) =
B*(pp(s)), whence v,(a,(s)) = 7,(5,(s)); thus there is q € O(P) such that p < q and

GP(ap(s)) = GP(B,(s)), that is ag(F2(s)) = B4(F(s)); by Proposition A.2.37 there is
u € E(q) such that F5(s) = 04(u), thus ¢ = @,(s) = d4(Fr(s)) = ¢q(dq(w)) = 0*(eq(u)),
that is, t € 6*(e). M

Proposition A.4.8. Let P be a directed preorder, C a concrete category, F and G functors
from P to C, 7 a natural transformation from ¥ to G such that, for each p € O(P), T, is

surjective. Then any direct limit of T is surjective.

Proof. Let 7 be the direct limit of 7 relative to the direct limits (f, ¢) of F and (g, ) of G.
If y € g there are p € O(P) and s € G(p) such that y = 7,(s). Since 7, is surjective, there
is ¢t € F(p) such that s = 7,(t); if x = ¢,(t), then 7(z) = 7(¢,(t)) = % (7(t)) = 7u(s) =
Y. M

Proposition A.4.9. Let P be a directed preorder, T an algebraic type, E.F, G functors
from P to Alg,. with direct limits (e €), (£,9), (g,7); a, natural transformations from
E to F, § a natural transformation from F to G such that, for each p € O(P), 4,
direct equalizer for oy, and 3,. Let 6* = lim[d, (e, €), (f,¢)], o* = lim[a, (f, ), (9,7)],
B* = lim|[B,(f, ¢),(g9,7)]. Then Coi(0*) = g/r(a*,*). In particular, §* is a direct

equalizer for o*, 5*.

1S @

Proof. Let (z,y) € eq(d*). Since x = ¢,(s) and y = ¢,(f) for some p € O(P) and some
s € G(p), t € G(p), we have 6*(¢,(s)) = 6*(¢,(t)), whence v, (5,(s)) = 7, (0,(t)); then there
is q € O(P) such that p < q and G} (0,(s)) = GE(6,(2)), whence 0,(F?(s)) = 04(F2(t)),
that is, (F2(s),F2(t)) € eq(d,); by Proposition A.2.27 eq(d,) = r(ag, 3,); now let 1 be a
congruence on g such that r,(a*, *) < I; then 1 = eq(h), where

h:g— g/l

z = [z];

also, for each pe O(P), ho¢,o0a, =hoa*oe, =hof*oe, = ho¢p,o 3, which yields
ro(ay, B) € eq(h o ¢,). In particular ry(ay, 5,) S eq(h o ¢,), so eventually

hx) = h(¢o(s)) = h(@a(F5(s))) = h(da(F5(1))) = h(es(t)) = h(y)
that is, (x,y) € 1 and eq(d*) < 1. Since | is any congruence on g such that r,(a*, 5%) < 1,
we have r(a*, 5*) € eq(0*)
Let (z,y) € ro(a*, f*). Then x = a*(z), y = 5*(z) for a z € e, and z = €,(s) for some
p € O(P) and s € E(p). Thus

0% (x) = 6% (a*(2)) = 0%(a*(€x(s))) = 0" (Pp(p(5))) = Yo (dp(a(s))) =

= 70, (5,(5))) = 6%(6,(B,(s))) = 6*(8*(ea(s))) = 0%(8*(2)) = 6*(y)
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that is, (z,y) € eq(d*) and r(a*, 5*) < eq(0*). M

A.5 Adjunction

Definition A.5.1. Let F:C—D and F:C—D be functors. An adjunction from F to
G is a natural isomorphism ¢ : Do (F x Ip) — Co (Ic xG). That is

¢: O(C) x O(D) — M(Set)
<C7 d) = Pea

where, for each pair (c,d) € O(C) x O(D), ¢.4 is a bijection
$ea: D (F(c),d) — C(c,G(d))

and for each f € C(c,c,) and g e D (d,d,) the diagram

¢c*,d

D (F(c,),d) —= C (c,, G(d))
D(F(f»g)l jC(f,G@))

= Pe,dy

D <F<C>7 d*) ﬁ'é <C7 G<d*>)

commutes, or both the diagrams

D (F(c,), d) =22 C (c,, G(d))
D(F(f)7d)l LC(fVG(d))
¢c,d

D (F(c),d) —=C/(c,G(d))

D (F(c),d) —=%C (¢, G(d))
D(F(c),9) lc(c G(g))
Pe dy

commute.

More in details, for each h € D (F(c),d) and k € D (F(c,),d)

Peay (90 h) =G(g) © ealh)
¢c,d (k S F(f)) = Cbc*,d(k) of

and for each k € C (¢, G(d)) and [ € C (c,, G(d))

Pea, (G(g) O F) = go @, 4(K)
Gea (Lo f) = 0c, a(k) 0 F(f).
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Proposition A.5.1. Let F:C—D and G:C—D be functors, ¢ an adjunction from F to
G, ce O(C). Set 1, = Perie)(idpe)). Then (F(c),n.) is a universal arrow from c to G, for
de O(D) and f € D (F(c),d) ¢.a(f) = G(f) o 7., and the map

n: O(C) - M(C)
c— 1,
15 a natural transformation from Ic to Go F.
Conversely, if n is a natural transformation from Ie to G o F and for each ¢ € O(C)

(F(c),n.) is a universal arrow from c to G, then there is an adjunction ¢ from F to G such
that

¢ea - D (F(c),d) — C(c,G(d))
[ G(f)on.

for each (c,d) € O(C) x O(D).
Proof. Suppose that ¢ is an adjunction from F to G. For ¢ € O(C) set

¢y : D (F(c),d) — C(c, G(d))
h — ¢c,d(h)'

Then ¢§ : D (F(c),—) — C(c,G—) is a natural isomorphism, so by PropositionA.2.11
(F(c), ¢, (idre))) is a universal arrow from ¢ to G.
)

For any ¢, € O(C), ¢, € O(C) and f : ¢; — c, the diagram

Meq

Io(c,) —+ G o F(c,)
Ic(f)L jGoF(f)
Io(cs) —=2 G o F(c,)

commutes because

Ne, © Ic(f) =Ty © f= ¢(Fc(2c)2) (idF(CQ)) of = ¢(Fc(lc)2) (idF(c2> OF(f)) =
= Qb(Fc(lc)g) (F(f)o idml)) G(F(f))o ¢F<c1> (1dF(c1>) =
= (GoF)(f)one,-

If for each ¢ € O(C) (F(c),n.) is a universal arrow from ¢ to G, then by Proposition A.2.9

$: D(F(c),d) - C(c,G(d))
f=G(f)one
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define a natural isomorphism ¢© : D (F(c), —) — C(c,G—). If the map 7 is a natural

transformation n : Ic - GoF, then if f : ¢ — c, the diagram

(cx)
D (F(c,),d) 2~ T (c,, G(d))

o lC(f,G(d))
(F(c),d) "~ T (e, G(d))

commutes because, for h: F(c) — d

$ (D (F(f),d) (h))

G (hoF(f))on. = G(h) o G(F(f)) on. =
G(h) o (GoF)(f)on. = G(h)one, o f =
C(f.G(d)) (57 (h)) -

So
¢: O(C) x O(D) — M(Set)
(c,d) = Pea
is an adjunction from F to G. M

Definition A.5.2. Let ¢ be an adjunction from F to G. The natural transformation

Nt Liomr — GF defined for c € O(domF) by 7. = ¢ re (idp)) is called the unit of ¢.

Proposition A.5.2. Let F:C—D and G:D—C be functors, ¢ an adjunction from F to
G, de O(D). Set eq = ¢glq)4(idem)). Then (G(d),eq) is a universal arrow from ¥ to d,
for ce O(C) and g € C(d,G(c)) ¢;4(f) = ea 0 F(g), and the map
e: O(D) - M(D)
d— gy

18 a natural transformation from F o G to 1.
Conversely, if € is a natural transformation from F o G to I, and for each d € O(D)
(G(d),eq) is a universal arrow from F to d, then there is an adjunction ¢ from F to G

such that
$ea: C(c,G(d)) —» D (F(c).d)
g—caoF(g)
for each (c,d) € O(C) x O(D).
Proof. Analogous to the proof of Proposition A.5.1. M

Definition A.5.3. Let ¢ be an adjunction from F to G. The natural transformation

€ : FG — Lionc defined for d € O(dom G) by e4 = ¢4, 4(idc)) is called the counit of ¢.
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Proposition A.5.3. Let F:C—-D, G:D—C be functors and ¢ be an adjunction from F
to G, n and e its unit and counit. Then for every c € O(C) and d € O(D)

Glea)no@ = ida) (A.120)

Proof. By the definitions of unit and counit of an adjunction and Propositions A.5.1 and
A5.2

ida@ = Gaw@.al€a) = Glea) N (A.122)

and
idpe) = Oopie) (M) = Ere F(1e)- (A.123)
M

Proposition A.5.4. Let G:D—C be a functor, and for each ¢ € O(C) let (F.,n.) be a
universal arrow from ¢ to G. Then there is a functor F:C—D such that for c € O(C)
F(c) = F,, and the n. are the components of a natural transformation n : Ic — GF. Thus
F is a left adjoint to G.

Proof. If f: ¢, — c, define F(f) as the unique map such that 7., f = GF(f)n.,. It's
easy to check that this defines a functor F:C—D. This definition also makes 7. into the

components of a natural transformation n : Ic — GF. e

Proposition A.5.5. Let F:C—D be a functor, and for each d € O(D) let (Gq,e4) be a
universal arrow from ¥ to d. Then there is a functor G:D—C such that for d € O(D)
G(d) = Gp, and the g4 are the components of a natural transformation e : FG — I. Thus

G is a right adjoint to F.

Proof. If f:d, — d, define G(f) as the unique map such that ¢, FG(f) = feq,. It's
easy to check that this defines a functor G:D—C. This definition also makes ¢4 into the

components of a natural transformation ¢ : FG — I. B3

Proposition A.5.6. Let F:C—D, G:C—D, H:D-E, K:B—C be functors and 7 : F —
G. Then there are natural transformation Hr : HF — HG and 7K : FK — GK defined for
ceO(C) and be O(B) by

Hr, = H(r,) (A.124)
end

TF, = TK(b)- (A.125)
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Proof. Routine check. M

Proposition A.5.7. Let F:C—-D, G:D—C be functors and n: Ic — GF, ¢ : FG — Iy
natural transformation such that
Ge onG =idg (A.126)
eFoFn=idp. (A.127)

Then there is an adjunction from F to G of which n is the unit and € is the counit.

Proof. Let c € O(C), we prove that (F(c),.) is a universal arrow from c to G.
Let f:c— G(d), and set h = g4 0 F(f). We prove that G(h) on, = f. Since n : Ic — GF

is a natural transformation
G&d O GF(f) @) 77(: = ng O nGd @) f = ldg(d) Of = f (A128>
If g : F(c) — d is such that G(g) on, = f then

h=cqoF(f) =c40FG(g9)oF(n.) =goeF.oFn, =goidpe = g. (A.129)

Proposition A.5.8. A right adjoint functor preserves inverse limits.

Proof. Let F:C—D, g:D—C, and ¢ an adjunction from F to G. Let H:J—D and
(I, A) be an inverse limit for H. Then (G(1),G\) is an inverse target for GH. Let (t,7)
be another inverse target for GH. Then for j € O(J) 7;: t — GH(j). For j € O(J) set
1y = Pok (1)« F(t) — H(j). If f e J(i,j) the diagram

= Pt H(i) —=

D(F(t), H{)) M2 C(t, GH(1)) (A.130)
D(F(t)vH(f))l lC(thH(f))

Pt.HG) =~

D(F(t), H(j)) == C(t, GH(j))
commutes, thus
H(f)op =H(f)o gp;;(i)(Ti) = (p;Il{(j)(GH(f) or,) = 90;11{(3)<7—j> = M (A.131)

and so the 7, are the components of a natural transformation 7 : Cy) — H, that is, (F(t), x)
is an inverse target for H. Thus there exists a unique h : F(t) — 1 such that g = Ao~ ",

Since for j € O(J) the diagram

D(F(t),1) — =~ C(t, G(1)) (A.132)
D(F(t),Ai)l LC(tG(/\j))

Pt.HG)

D(F(t), H(j)) = C(t, GH(j))
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commutes, we have

GA; o ‘Pt,l(h) = S%H(j)()‘i © h) = %H(J)(NJ) = Tj- (A-133)
and thus
GAoy il =T (A.134)

If also k : t — G(1) is such that

Glovy) P =71 (A.135)
then again because the diagram A.132 commutes we have for j € O(J)

A () = oot (GO © k) = ok () = 1 (A136)
whence ¢, (k) = h and k = ¢, ,(h). M
Corollary A.5.1. A right adjoint functor preserves monomorphism.

Proof. Let G:C—D be a right adjoint and let f € C(c,,c,) be a monomorphism. Then

c, et c, (A.137)

o
f

c,——=¢C,
is a pull-back, and by Proposition A.5.8 so is

Fle) 2 p(e,) (A.138)

o e
F(f)

F(c,) ——c,
so F(f) is a monomorphism. e
Proposition A.5.9. A left adjoint functor preserves direct limits.
Proof. Analogous to proof of Proposition A.5.8 e
Corollary A.5.2. A left adjoint functor preserves epimorphism.
Proof. Analogous to proof of Corollary A.5.1 Y

Definition A.5.4. Let C be a category, S € O(C). The immersion functor of S in
C is the functor I°:5*—C defined on objects by

(c)=c (A.139)
and on morphisms by

I(id.) = id. . (A.140)
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Definition A.5.5. We say that a category C satisfies the Solution Set Condition
if there is a small subset S of O(C) such that for every object ¢ of C there is an object

¢ €S and a morphism f: ¢ — c. The set S is called the solution set of C.

Theorem A.5.1. Let C be a small-inverse-complete category with small hom-sets. Then

C has an initial object if and only if it satisfies the Solution Set Condition.

Proof. Suppose C has an initial object i. Then {i} is a solution set of C. Suppose S is an
initial set of C. Let I® be the immersion functor of S in C. Since C is small complete the
inverse product (p, ) of I8 exists. Since the set C(p, p) is small and C is small-complete
an equaliser e : i — p of it exists. For ¢ € O(C) there is an object c¢* € S and a morphism
f:c* - c, and thus also a morphism formoe:i— c. Suppose there are two morphisms
g1, G . 1 — c, then there exists an equaliser of them h : u — i. By construction of p there
is a morphism s : p — u, thus eohos € C(p, p), and since e is an equaliser of C(p, p) we
have eohosoe = id, oe = eoid; whence, since e is a monomorphism, hosoe = id;. Thus h

has a right inverse whence, since it is a monomorphism, it is an isomorphism, which yields

g1 = G2- 3¢

Definition A.5.6. Let F:C—D be a functor, d € O(D). We call projection functor
F-under d the functor Q*" defined on object by Q*F((c,u)) = ¢ and on morphisms by
Q¥ (f) = f. We call projection functor F-over d the functor Q"¢ defined on object
by Q"((u,c)) = ¢ and on morphisms by Q**(f) = f

Theorem A.5.2. If the functor F:C—D preserves small inverse limits then for every

d € O(D) the projection functor F-under d creates all small inverse limits.

Proof. Let J be a small category, H:J —C and (I, \) an inverse limit of Q*"H. Then
(F(1),FA) is an inverse limit of FQ**H. For j € O(J) set H(j) = (c;, 11;), and the p; are the
components of a natural transformation p : C$P — F. Thus (d, ) is an inverse target for

F, and there is a unique morphism f : d — F(1) such that
pr="TFroy/P. (A.141)

Since F); : F(1) — FQ*"H(j) and FQ*"H(j) = F(c;), then from Eq. A.141 follows that
FXN e (d] F)((L f),H(j)), and ((L, f),FA) is an inverse target of H.

If ((m, g), 7) is another inverse target of H, then (m, 7) is an inverse target of Q®"H, thus

there is a unique morphism A : m — 1 such that

T=MXovy . (A.142)

Let’s show that h € (d| F)((m, g), (1, f)). From Eq. A.142 follows F7 = FAo 7FJ(§) and

C

FA© eieg = FAO iy 0 C = FT o757 = (A.143)
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and the uniqueness of f in Eq. A.141 yields F(h) o g = f.
Suppose there is also k : (m, g) — (1, f) such that 7 = Ao+, then k € C(m,1) and the

uniqueness of h in Eq. A.142 yields k = h.
Thus ((L, f),FA) is a limit of H. M

Theorem A.5.3 (Freyd Adjoint Functor Theorem). Let D be a small-inverse-complete
category with small hom-sets. A functor F:D—C has a left adjoint if and only if it preserve
all small inverse limits and for every object c € O ¢ the category (¢ | G) satisfies a Solution
Set Condition.

Proof. 1f G has a left adjoint then it preserves all limits, in particular all small ones. If F
is the left adjoint of G and 7 is the unit of the adjunction then {(F(c),n.)} is a solution
set for (¢ | G). Indeed, if ¢ is the counit of the adjunction then for (d,u) € O((c | G))
caoF(u) e D(F(c),d) and G(eq 0 F(u)) on. = u, thus e4 0 F(u) € (¢| G)((F(c),n.), (d,u)).
If G preserves all small inverse limits then by Theorem A.5.2 for every ¢ € O(C) the
category (c| @) is small-inverse-complete.

Since D has small hom-sets for every ¢ € O(C) the category (c¢| G) also has small hom-sets.
If for every object ¢ € O(c) the category (c | G) satisfies a Solution Set Condition, then,
since it is small-inverse-complete and has small hom-sets, by Theorem A.5.1 it has an initial
object, thus by Proposition A.2.5 there is a universal arrow from c to G. By Proposition
A.5.4 G has a left adjoint. M

Proposition A.5.10. Fvery functor from J to C has a direct limit if and only if AL has
a left adjoint.

Proof. Suppose A has a left adjoint £ and let ¢ be the adjunction’s natural isomorphism.
Then by Proposition A.2.16 for Fe O(C’) (L(F), @) (idzw)) is a direct limit for F.

If every Fe O(C”?) has a limit (1y, A\¢), then this is a universal arrow from F to AZ, thus
by Proposition A.5.4 A has a left adjoint. ey

A.6 Biproducts

Proposition A.6.1. Let A be an ab-category. If (c,p;) is an inverse product of the objects

{a,...a;} then (c,i;) is a direct product of {a, ...a;}, where the morphisms i, are defined

by

id, ifi=j
pit; = a f j (A.144)
0., if i # j.
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If (d,4,) is a direct product of the objects {a, ...a;} then (d,p;) is an inverse product of

{a,...a,}, where the morphisms p, are defined by

i —
pi, =4 yi=J (A.145)
0, ifi # j.

Proof. Suppose (c, p;) is an inverse product of the objects {a, ...a;} and let i, fori =1---n

be defined by Equation (A.144). We have ¢,p, + - -+ + i,p, = id,, indeed

pi(iaps + -+ 4.p,) = p;- (A.146)
Let ee O(A) and f,:a, > efori=1---n. Let

h=fp+...4 f.p. (A.147)

Then hi, = f, fori =1---n. If k: ¢ — e such that ki, = f, for i = 1---n, then

kispy + -+ 4+ ki,p, = fpr + -+ [pa (A.148)
but

ki,p, + -+ - + ki,p, = k(ipy + - - +i,p,) = kid. = k (A.149)
thus k& = h.
The proof of the second part is analogous. P

Definition A.6.1. Let A be a category with zero morphisms, a,, ..., a, objects of A. An

object c is a biproduct of a,,..., a, if there are morphisms p, : ¢ — a, and i, : a, — ¢
for i =1,...,n such that
id, ,if1 =7
pi, =4 ot t = (A.150)
0., if 12 # 5
and
e c is an inverse product of a,, ..., a, with projecions p,
e c is a direct product of a,, ..., a, with injecions 4.

The morphisms p, are called the projections of c, the morphisms ¢, are called the injec-

tions of c.

Proposition A.6.2. Let A be an ab-category, a,,...,a, € O(A), ¢ € O(A) for which

there are morphisms p, : ¢ — a, and i, : a, —> ¢ fori = 1,...,n such that

e
pi, = { o1 =1 (A.151)
0, ifi #

and
Z.1191 + e + Z-np'n = 1dc . (A152)

Then c is a biproduct of a,, ..., a, € O(A) with projections p, and injections i,.
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Proof. By Proposition A.6.1 it is sufficient to prove that c is an inverse product of a,, ..., a,
with projecions p;.
Letde O(A) and ¢, : d — a, for i = 1,...,n. Define h: d — ¢ by

=i (A153)
=1
Then
p;h = pjziiQi = ij/iiqi = pi;q; = idaj q; = 4;. (A.154)
1=1 i=1

If also k£ : d — c is such that p,;k = ¢, for2=1,...,n. Then
k=id k=) iphk =) iph=idh=h. (A.155)
1=1 i=1

e

Proposition A.6.3. Let A be an ab-category, a,,...,a, objects of A, ¢ a biproduct of

a,,...,a, with projections p;, and injections i,. Then c is an inverse product of a,,...,a,
with projections p; and a direct product of a,, ..., a, with injections i,.
Proof. Routine check. M

Notation A.6.1. We will write

é) a, (A.156)
N i

a®---Oa, (A.157)

or, when there is no risk of ambiguity

(a,0a, (A.158)

for the isomorphism class of the biproducts of a,, ..., a,, and also for a specific member of

it when this will not generate any ambiguity. We will write
p*, i (A.159)
respectively for the projections and injections of the biproduct indicated by e.

Proposition A.6.4. Let A be a category with zero morphisms, a,,...,a,, b,,...,b, ob-
jects of A, fi:a, »> b, fori=1,...,n, and suppose that ®a, and Ob, exist. Then there
is a unique map O f, 1 © a; — Ob, satisfying for j =1,....n

ijbi Ofi= fjpj@ai

A.160
oL =i, 100
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If A is an ab-category then

Of = i f,po™. (A.161)

j=1
Proof. That the (A.160) define a unique map ®f; : ® a; — ©b; is a consequence of being
®a, an inverse product with projections p®*, and ®b, a direct product with injections i®%.
From the first of (A.160) we get

i iPpP O fi = i i 2% 2 (A.162)
but 7 7
Zn:ijebip]@bi O f, =idgy, Of, = Of.. (A.163)
i1
M

Definition A.6.2. For a category with zero morphisms C and ¢ € O(C) the maps

). : ¢ —cllc (A.164)
0°:cllc —»c (A.165)

defined respectively by

p;llcéc = pzllcéc = 1dc (A166)

deicte = goggte =id, (A.167)
are called respectively the diagonal map to clic and the diagonal map from cllc.
Lemma A.6.1. In an ab-category the biproduct is bilinear with respect to composition.

That is, if f,:a, > by, ¢s: b, > ¢, fb:a, > b,, go: b, > c,, and a, ©® a,, b, ® b,,
c, O ¢, exist, then (9, © g,) o (/L © f) = (g1 0 f1) O (g0 f2)-

Proof. We have

(9.0.92) 0 (i o) = (i519% 0 g, 0 phio® + 9192 0 g, 0 phio™2)o
o (1972 o f, 0 IO 4 197 o f, o ppiom) =
= (i719% 0.g, 0 IO 0 7192 o f, 0 O ¢

1
:c1Oc b1Ob. b1Ob ajOa
+(221 20920p21 20211 20f10p11 2)+
:c10c b1Ob ‘b1 Ob a1 Qa
+ (17192 0 gy o P12 0 719" 0 f, 0 p1On2) +
c1Oc b1Ob *b1Ob a]@Oa _
+ (i519°2 0 g, 0 pr2 00197 o f, 0 prOt2) =

= (ijl@% ©g,ofi Op?@%) + (i;1602 0g,0 fy0 p;1®az) =

= (g0 f)) ©(g20 1)
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Remark A.6.1. The result of Lemma A.6.1 can of course be extended to any number of

operands, that is

n

@(filo.‘.ofim):éfilo...oéfim (A168)

1=1

Lemma A.6.2. For f, :a— b, f, : a— b in an ab-category

fl +f2 = 5b(f1@f2>5a- (A.169)

Proof.

(1 © f2)da = 6°(i7°° fipi®® + 137 fop37%) 6 =
= 0" (15¢7 f1id, +2°" f,1d,) =
=id, fi +idy f; =
=fi+ fa

e

Definition A.6.3. A functor F:A—B betewen ab-categories is additive if for any two

morphisms f,:a—b, f,:a—b

F(fi+ f2) = F(f)) + F(f2). (A.170)
I Maybe add here def of ”preserve biproducts”? !!!

Proposition A.6.5. If A and B are ab-categories and A has binary biproducts then a
functor F:A—B s additive f and only if it preserves biproducts.

Proof. If F is additive then it is easy to check that for a, € O(A), a, € O(A), F(a, © a,)
is a biproduct of F(a,) and F(a,) with projections F(p*1®22) and injections F(i*1©22),
Suppose F preserves biproducts and let f, : a — b, f, : a — b. Since F preserves biprod-
ucts F(d.) = dp@ and F(6°) = 67®), thus

F(fi + f2) = F(0* (1 © f2)0.) = 0" (F(£,) O F(f2)) ey = F(f)) + F(f2).  (A171)
M

Proposition A.6.6. Let C be a category, A an ab-category with all biproducts. Then for
n € N there is a functor ()" :C"—A such that for a, € O(A), fie M(A),i=1,...,n

e O'(ay,...,a,) =G a
e O (fi, o f)=OL, fie
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Proof. Let a, € O(A),i=1,...,n. Then

n n

Oiday, .- id,,) = Y i id, pP =

j=1
n

= O O
28D
j=1

- lanl .

Let (f1, f.) : (a,a,) — (by,by), (g1,9.) : (by,b,) — (¢;,¢,). Then by Lemma A.6.1 and
Remark A.6.1

n n n n

@(91 O fiyeisgnofa) = @(91 ofi)= @(91) © @(fz) = (A.172)
= é(gl,...,gn) Oé(fl,..-,fn). (A.173)

e

Proposition A.6.7. Let D be a category with n-order biproducts. Then for every category
C the category D€ also has n-order biproducts.

Proof. Let F,,... F, € O(D®). Let’s show that there is a functor ©F, € O(D®) defined
by:

o (OF.)(c) = OF;(c) for c € O(C)
o (OF)(f) = OF.(f) for fe M(C).
For ¢ € O(C)
(OF,)(ide) = OF,(id.) = ©idg() = idgwe - (A.174)
For composable morphisms f, g € M(C) by Lemma A.6.1
(OF)(go f) = OFi(go f) = O(Fi(g) o Fi(f)) = OFi(g) o OF.(f). (A.175)

Let’s show that OF, is a biproduct of F,, ..., F,. It will suffice to show that it is an inverse
product of F,...,F,. Let’s show that there are natural transformation p¢™* : © F, — F,
for j = 1,...,n defined for c € O(C) by

(PO, = PO, (A.176)

Let c,d € O(C), f € C(c,d). The diagram

#P" e
(OF;)(c) F;(c) (A.177)
<@Fi)<f)l le )
(p?Fi)d

(OF)(d) ——*—~F,(d)
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commutes because

F,(f) 0 (57™)e = F,(f) 0 7
(p%)a 0 (OF)(f) = p°@ 0 OF,(f)

and
F.(f) opg;)Fi(@ _ p?md) o OF,(f) (A.178)
by the definition of OF,(f). M

Lemma A.6.3. Let A be an ab-category with finite biproducts, F, € O(A°) fori=1,...,n
and suppose that (c,, ;) is an inverse limit for ¥, fori =1,...,n. Then (Oc,,Om;) is an

inverse limit for OF,.
Proof. Note that ©CZ* = Cg.2, therefore the biproduct O; is a natural transformation
Om; : Cgt — OF, (A.179)

o (®c,;,®m) is an inverse target for ©F,. If (d,h) is an inverse target for OF,, for

1=1,...,n set
h, = p® o h; (A.180)

these are natural transformations h, : C$* — F, that factor uniquely as:

h, =m ok, (A.181)
where k; for i = 1,...,n are natural transformations
kit C3% — Co%, (A.182)

Set
b= 30 ok,
Then O, o h* = h, indeed
5% CSes F
Om, o h* =®7r.osz tok; =Z®mozj tok; 2226 iom, ok,
= D i oh; = > i 0 pTih = idge, h = h.

If1: C§* — GG is such that O ol = h, then

CA

h = Z jowopl Cj)ol
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thus

F; g
hizpiD ]hzﬂioplpc] ol (A.183)
which yields

CC’A

P> ol=k (A.184)
because the factorization of h; through 7, is unique, and
- Zifgé? 0p % o] = Zz'f&? ok, = h*.
P

Lemma A.6.4. Let A be an ab-category with finite biproducts, F, € O(A€) fori=1,...,n
and suppose that (c,, m,) is a direct limit for F, fori=1,...,n. Then (Oc,,On,) is a direct
limit for OF,.

Proof. Analogous as proof to Lemma A.6.3. M

Lemma A.6.5. Do we really need this? If F and G are functors such that imF and lim G
exist, (a,f) and (b, g) inverse targets for ¥ and G that factor through t* and g*, then f©g
factors through t* © g*.

Proof. We have
fOg=(p=" of*) O (pe®of) = (p=" @ p=T) o (f* O g¥).
M

Lemma A.6.6. Do we really need this? If F and G are functors such that lim F and lim G
exist, (a,f) and (b,g) direct targets for F and G that factor through t* and g*, then f© g
factors through t* © g*.

Proof. We have
fOg=(f* oiE;F) O (g*o Z'E;G) =(f*Og*)o (ih—n;F@ Zh—m>G)
e

Lemma A.6.7. Let C be a category, A an ab-category with finite biproducts, for i =
1,...,nlet F,,G, € O(A°), (c;,m) and (d;,7;) inverse limits for ¥, and G, f,: F, —» G,

h, : CSi’A — Cgi*A an inverse limit of f,. Then ®h, is an inverse limit of Of,.
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Proof. We have
Of, cOm, =0, o) = O(7;, 0h;)) = OT, 0 Oh,. (A.185)
M

Lemma A.6.8. Let C be a category, A an ab-category with finite biproducts, for i =
1,...,n let ¥,,G, € O(A°), (c;,m) and (d,, ;) direct limits for ¥, and G,, f, : F;, —» G,,
h, : C:_*A — CSZ_’A a direct limit of f,. Then Oh, is a direct limit of Of,.

Proof. Analogous as proof of Lemma A.6.7. e

Lemma A.6.9. Let A be an ab-category. If fori =1,...,n f, is an inverse equalizer for

gi, hy, and O f,, ©g;, ©h, exist, then O f; is an inverse equalizer for ©g,, Oh,.
Proof. We have
@giOin :@(giofi) :Q(hiofi) :thOGfi' (A186)

Fori=1,...,nlet f,:a, - b,, g: b, > ¢, h,: b, - c,. If f:a— Ob, is such that
(®g;) o f = (Oh;) o f, then

Dilgp f = Z i hap™ f (A.187)

@

whence, composing on the left by p, o

gpn 2 f = hapy | (A.188)

Q"‘J *.
i 7

For h = 1,...,n there are unique morphisms f* such that p;" f = f, f*. Set f* = Y4,
then

Of o f = S o N i e = N =S = p (As)
If Of o f* = f, then

DT = f (A.190)
thus

P = fpn = S (A.191)
and, since the factorisations of the pi?*‘f f are unique

N A (A.192)
whence

= DI = Y Y fE = (A.193)
h
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A.7 Abelian categories

Definition A.7.1. A preadditive category is a category in which every hom-set is an

abelian group.

Definition A.7.2. An additive category is a preadditive category which has a null
object.

Definition A.7.3. An abelian category is an additive category A in which the following

conditions are satisfied
1. A has binary biproducts.
2. Every morphism of A has a kernel and a cokernel.

3. Every monomorphism of A is a kernel and every epimorphism of A is a cokernel.

Proposition A.7.1. Let C be a category. If f € C(a,b), ker(f) and cok(ker(f)) exist,
then ker(f) is a kernel of cok(ker(f)). That is, if a morphism is a kernel and has a

cokernel, then it is a kernel of any of its cokernels.

Proof. Let f:a— b, h:d— aakernel of f, k: a — e a cokernel of h. Since foh = 0g,
f factors uniquely as f = f*ok;if g: ¢ — a is such that ko g = 0¢, then fog = 0 also
holds, so g factor uniquely as g = h o g*. M

Proposition A.7.2. Let C be a category. If f € C(a,b), cok(f) and ker(cok(f)) erist,
then cok(f) is a cokernel of ker(cok(f)). That is, if a morphism is a cokernel and has a

kernel, then it is a cokernel of any of its kernels.

Proof. Let f:a — b, h: b — d be a cokernel of f, k: e — b a kernel of h. Since
ho f =03, f factors uniquely as f = ko f*; if g: b — c is such that g o £ = 02, then
go f =02 also holds, so g factor uniquely as g = g* o h. M

Proposition A.7.3. Let A be an abelian category, f € M(A). If f is a monomorphism
then f = ker(cok(f)), if f is an epimorphism then f = cok(ker(f)).

Proof. Straightforward from Definition A.7.3 and Propositions A.7.1, A.7.2. M

Lemma A.7.1. Let C be a category with zero morphisms, f € M(C). If f is a kernel of
a zero morphism then it is an isomorphism, if f is a cokernel of a zero morphism then it

18 an isomorphism.

Proof. Suppose f : k — a is a kernel of 02. Since 02 id, = 02, then id, factors uniquely as
id, = fg. Thus f = fgf, and gf = id, because f is a monomorphism. The proof of the

second part is analogous. B¢
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Proposition A.7.4. In a category with zero morphisms a morphism that is both a monomor-

phism and an epimorphism is an isomorphism.

Proof. If f:a — b is a monomorphism, it is a kernel of a morphism ¢g: b — ¢, so
go f = 02 which implies g = 0" if f is also an epimorphism. By Lemma A.7.1 f is an

isomorphism. B3
Lemma A.7.2. An abelian category has binary inverse equalisers.

Proof. 1f f,, f, : a — b it is straightforward to prove that a kernel of f, — f, is an inverse

equaliser of fi, f,. M
Lemma A.7.3. An abelian category has pullbacks.

Proof. Straightforward from Proposition A.3.1 and Lemma A.7.2 and an abelian category
having binary biproducts. e

Proposition A.7.5. If A is an abelian category, so is AY for any category J.

Proof. Let F,G € O(A?) and o, 8 € AJ(F,G). Define the natural transformation o + 3
for each j € O(J) by

(a+ B); = o5 + B;.

It is clear that thus every hom-set AJ(F,G) is an additive group.
If 0 is a null object of A, the functor N : J — A defined by

N(G) =0 jeO(J)
N(f) =05 feM(I)

is a null object in A”.

AY has binary biproducts by A.6.7.

By Proposition A.2.35 every morphism in A7 has a kernel, and by Proposition A.2.24
every morphism in A’ has a cokernel.

If f e M(A?) is a monomorphism, by Theorem A.2.2 every component f; is a monomor-
phism, therefore it is a kernel, and by Proposition A.7.1 it is a kernel of the component c¢; of
a cokernel ¢ of f. Then f is a kernel of c. If f € M(A7) is an epimorphism, by Theorem (%o
do, analogous to Theorem A.2.2 for direct limits) every component f; is an epimorphism,
therefore it is a cokernel, and by Proposition A.7.2 it is a cokernel of the component k; of
a kernel k of f. Then f is a cokernel of k. M

Definition A.7.4. Let C be a category, f € M(C). An image of f is a monomorphism

m such that
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e there is e € M(C) such that f =moe
o if f = m/oe’ and m' is a monomorphism then there is v € M(C) such that m = m/ow.

Proposition A.7.6. If C is a category, f € M(C) and m is an image of f, then there is
a unique e € M(C) such that f = moe.

Proof. Straightforward from the fact that m is a monomorphism. M

Proposition A.7.7. Two morphisms are images of the same morphism f if and only if

they belong to the same subobject of cod(f).
Proof. Straightforward from definition. %

Notation A.7.1. For a morphism f we will denote by img(f) the equivalence class of all
the images of f, which is a subobject of cod(f). Thus m € img(f) will mean that m is an
image of f. We will also write img(f) for any element of img(f), when there will be no

need to specify further.
Lemma A.7.4. If fis a monomorphism then f € img(f).

Proof. Let f:a — b. We have f = f oid,, and if m is a monomorphism such that

f = moe, then this is the unique factorisation of f through m. Since f is a monomorphism

feimg(f). >

Proposition A.7.8. If A is an abelian category, for any f € M(A) img(f) = ter(cot(f)).

Proof. Being img(f) and ter(cot(f)) equivalence classes, it is enough to prove that there
is a cok(ker(f)) in img(f).

Let f:a — b. Then f factors as f = ker(cok(f)) o e because cok(f) o f = 0%, and
ker(cok(f)) is a monomorphism. We need to prove that if f factors as f = goh and g is a
monomorphism, then ker(cok(f)) factors through g. By Proposition A.7.3 g = ker(cok(g)),
so we will prove this by proving that cok(g) o ker(cok(f)) = 0gar .

We have cok(g) o f = cok(g) ogoh = 0g,, , thus cok(g) factors as cok(g) = m o cok(f). It

follows that cok(g)oker(cok(f)) = mocok(f)oker(cok(f)) = Opa ™ so indeed ker(cok( f))
factors through ker(cok(g)), that is, through g. This proves that ker(cok(f)) € img(f). "X

Definition A.7.5. Let C be a category, f € M(C). A coimage of f is an epimorphism
e such that

e there is m € M(C) such that f =moe

e if f=m'o¢ and € is an epimorphism then there is v € M(C) such that e = voe'.
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Proposition A.7.9. If C is a category, f € M(C) and e is a coimage of f, then there is
a unique m € M(C) such that f = moe.

Proof. Straightforward from the fact that m is an epimorphism. M

Proposition A.7.10. Two morphisms are coimages of the same morphism f if and only

if they belong to the same superobject of dom(f).
Proof. Straightforward from definition. B3

Notation A.7.2. For a morphism f we will denote by coi(f) the equivalence class of all
the coimages of f, and by coi(f) any of its members, when that does not give rise to any

confusion.
Lemma A.7.5. If fis an epimorphism then f € coi(f).

Proof. Let f:a — b. We have f = id, of, and if e is an epimorphism such that f =

m o e, then this is the unique factorisation of f through e. Since f is an epimorphism

f € coi(f). M
Proposition A.7.11. If A is an abelian category, for any f € M(A) coi(f) = cot(ter(f)).

Proof. Being coi(f) and cot(ter(f)) equivalence classes, it is enough to prove that there is
a cok(ker(f)) in coi(f).

Let f:a — b. Then f factors as f = e o cok(ker(f)) because f oker(f) = 05", and
cok(ker(f)) is a monomorphism. We need to prove that if f factors as f = goh and h is an
epimorphism, then cok(ker(f)) factors through h. By Proposition A.7.3 g = cok(ker(g)),
so we will prove this by proving that cok(ker(f)) o ker(h) = Oty ma(sy)-

We have foker(h) = eohoker(h) = 05"™, thus ker(h) factors as ker(h) = ker(f) om. It
follows that cok(ker(f)) o ker(h) = cok(ker(f)) o ker(h) o ker(g) o m = 0¢o(in. (s, S0 indeed
cok(ker(f)) factors through cok(ker(h)), that is, through h. This proves that cok(ker(f)) €

coi(f). X

Lemma A.7.6. Let A be an abelian category, f € A(a,b), g € A(b,c). Then img(f) =
ter(g) iof and only if cot(f) = coi(g).
Proof. We have

img(f) = ter(g) < ter(cot(g)) = ter(g)
<= col(ter(cot(f))) = cob(ter(g))

= cot(f) = coi(g).
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Definition A.7.6. A diagram of morphisms

ca—sb—2op ...

is exact at b if and only if img(f) = ter(g) or equivalently cot(f) = coi(g).

Lemma A.7.7. In a category with zero morphisms for any two objects a and b cot(02) =
[idb]b'

Proof. Straightforward from the definition of cokernel. %
Lemma A.7.8. In a category with zero morphisms for any two objects a and b img(02) =
03]
Proof. Straightforward from the definition of image. M
Proposition A.7.12. In an abelian category the diagram of morphisms

0——a—'-b (A.194)
is exact at a if and only if f is a monomorphism.

Proof. The diagram (A.194) is exact at a, by Lemma A.7.8, if and only if ter(f) = [0?],

so if and only if f is a monomorphism. M

Lemma A.7.9. In a category with zero morphisms for any two objects a and b ter(02) =

[id.]".
Proof. Straightforward from the definition of kernel. 23
Lemma A.7.10. In a category with zero morphisms for any two objects a and b coi(0?) =
03]
Proof. Straightforward from the definition of image. M
Proposition A.7.13. In an abelian category the diagram of morphisms

a—t-b——-0 (A.195)
15 exact at b if and only if f is an epimorphism.

Proof. The diagram (A.195) is exact at b, by Lemma A.7.10, if and only if cot(f) = [05],
so if and only if f is am epimorphism. M
Definition A.7.7. In a category with a null object 0 a diagram of morphisms

0 afbgc 0

is a short exact sequence of morphisms if it is exact at a, b, c.
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Proposition A.7.14. In an abelian category the diagram of morphisms

0—a—t-b-—2ec—s0 (A.196)

is a short exact sequence if and only if f € tex(g) and g € co(f).

Proof. By Proposition A.7.12 the diagram (A.196) is exact at a if and only if f is monic.
By Proposition A.7.13 the diagram (A.196) is exact at c if and only if ¢ is epic. Thus
f eimg(f) and g € coi(g), and the diagram (A.196) is exact at b if and only if f € ter(g)
or g € co(f). X

Definition A.7.8. In a category with zero morphisms a diagram of morphisms

0 afbgc

is a short left exact sequence of morphisms if it is exact at a and b.

Proposition A.7.15. In an abelian category the diagram of morphisms

0—a—t-b—2-c (A.197)

is a short left exact sequence if and only if f € tex(g).

Proof. By Proposition A.7.12 the diagram (A.197) is exact at a if and only if f is monic,
that is if and olny if f € img(f) , and so the diagram (A.197) is exact at b if and only if
f € ter(g). X

Definition A.7.9. In a category with a null object 0 a diagram of morphisms

at-b-2oc 0
is a short right exact sequence of morphisms if it is exact at b and c.

Proposition A.7.16. In an abelian category the diagram of morphisms

a—t-b-toc—>0 (A.198)

is a short right exact sequence if and only if g € cot(f).

Proof. By Proposition A.7.13 the diagram (A.198) is exact at c if and only if g is epic,
that is if and olny if g € coi(g) , and the diagram (A.198) is exact at b if and only if
g € cot(g). X

Definition A.7.10. A functor T : A — B between abelian categories is

e left exact if it preserves finite inverse limits, that is, if for any finite category I, any
functor F : I — A and any inverse limit (1, ) of F, (T(1), T(x)) is an inverse limit of
TF.
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e right exact if it preserves finite direct limits, that is, if for any finite category I,
any functor F : I — A and any direct limit (1, 1) of F, (T(1), T()) is a direct limit
of TF.

e exact if it is both left and right exact.

Remark A.7.1. A left exact functor T : A — B between abelian categories preserves in
particular kernels, which can be stated in the form T(ker(f)) = ker(T(f)), and thus it

preserves short left exact sequences, that is, if

0 afbgc

is exact, then

T(f)

0—— T(a) YL p(p) 1L

T(c)

is also exact.
A right exact functor T : A — B between abelian categories preserves in particular coker-
nels, which can be stated in the form T(cok(f)) = cok(T(f)), and thus it preserves short

right exact sequences, that is, if

afbgc 0

is exact, then

T(a) T(f)

is also exact.

Proposition A.7.17. A functor between abelian categories is left exact if and only if it is

additive and preserves kernels.

Proof. If a functor is left exact it preserve in particular finite inverse products, and so it
preserves binary biproducts, and by Proposition A.6.5 it is additive.

If a functor is additive By Proposition A.6.5 it preserves binary biproducts, and if it
preserves kernels it preserves also binary inverse equalisers. Then by Theorem A.2.1 it

preserves finite inverse limits. e

Proposition A.7.18. A functor between abelian categories is right exact if and only if it

18 additive and preserves cokernels.

Proof. If a functor is right exact it preserve in particular finite direct products, and so it
preserves binary biproducts, and by Proposition A.6.5 it is additive.

If a functor is additive By Proposition A.6.5 it preserves binary biproducts, and if it
preserves cokernels it preserves also binary direct equalisers. Then by Theorem (TO DO!!!)

it preserves finite direct limits. %
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Lemma A.7.11. If f is a kernel of ko j and j is an isomorphism, then jo f is a kernel
of k.

Proof. Surely ko (jo f) = 0540, If koh = 005, set I = j~' oh; then (ko j)ol = 0%y,
thus [ = foh* and h = jo foh*. Ifalso h=jo foh® then h° = h* because jo f is a

monomorphism. e

Lemma A.7.12. If f is a kernel of iok and i is an isomorphism, then f is a kernel of k.

Proof. Since ioko f = 0%y’ then ko f = 055, If kog = 02o1%, then also iokog = 0%oy?,

thus g = fog*. If also g = f o ¢g° then g° = g* because f is a monomorphism. B3

Lemma A.7.13. If f is a cokernel of jok and j is an isomorphism, then foj is a cokernel
of k.

Proof. Surely (foj)ok =05y, If hok = 024, set [ = hoj; then lo (jok) = 0%,
thus l = h*o f,and h = h*o foj. If also h = h° o f o j, then h° = h* because f o j is an

epimorphism. B¢

Lemma A.7.14. If f is a cokernel of koi and i is an isomorphism, then f is a cokernel
of k.

Proof. Since fokoi = 05oy}) then fok = 0%y, If gok = 0224 then also gokoi = 0%y,

thus g = g* o f. If also g = g° o f then g° = g* because f is an epimorphism. e

Lemma A.7.15. If in the commutative diagram

0 a, a, a, 0

A

0 b, —2~b, E- b, 0

the first row is exact and the vertical morphisms are isomorphisms, then the second row is

also exact.

Proof. Since f, = ker(f,) = ker(i;' 0g,01,), from Lemma A.7.12 f, = ker(g, 04,) and from
Lemma A.7.11 i, o f, = ker(g,), thus g, 04, = ker(g,) and g, = ker(g,).

Since f, = cok(f,) = cok(i;' o g, 04,), from Lemma A.7.14 f, = cok(i;"' o g,) and from
Lemma A.7.13 f, 0i;' = cok(g,), thus i;' o g, = cok(g,) and g, = cok(g,). M



68

A. Some facts on categories and limits




Appendix B

Algebraic types and varieties of

algebras

B.1 Algebraic types

Definition B.1.1. An algebraic type (2 is a pair (S, f) where S is a set and f is a map
from S to O(Set). The set S is called the operation set of () and its elements are called
the operation symbols of (), the map f is called the arity map of ) and for s € S the
set f(s) is called the arity of s.

Notation B.1.1. For an algebraic type €2 we will write |€2| for its operation set and ar,, for

its arity map.

Definition B.1.2. An algebraic type 2 is called finitary if for each s € ||, card(ar,(s)) <
w.
An algebraic type  is called conventional if |()| is a cardinal and for each s € ||, arg(s)

is a cardinal.

Definition B.1.3. Let 2 be an algebraic type. An Q-algebra is a pair (T, (f,).cq) Where
T is a set and for each s € |Q] f, is a map from T*>e® to T, that is, an operation of arity

arg(s) on T.

Notation B.1.2. For an €2 algebra A = (T, (f.).cq)) we will write |A| for T and for s € ||

s for f..

Definition B.1.4. If Aa and B are Q2-algebras, an homomorphism from A to B is a
map f : |A| — |B] such that for each s € || and each (z,).cuq ) € |A

f(SA((xi)iEarQ(s>)) = S ((f(zi))iearg(s)) . (B'l)

Notation B.1.3. If Q) is an algebraic type, (2-Alg is the category of (2-algebras and homo-

arqy(s)

morphisms between (2-algebras.
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Definition B.1.5. Let A be an (-algebra. A subalgebra of A is an ()-algebra B such

that |B| < |A| and the inclusion map from B to A is a homomorphism.

Remark B.1.1. If A is an Q-algebra the subalgebras of A correspond to the subsets of |A|

which are closed under the operations of A.
Notation B.1.4. If B is a subalgebra of A we will write B = A.

Remark B.1.2. The subalgebras of an ()-algebra constitute a set partially ordered by the

relation C.

Notation B.1.5. The set of subalgebras of an Q-algebra A will be noted by S(A).

Definition B.1.6. A homomorphic image of an (l-algebra A is an ()-algebra B
such that there exists a homomorphism from A to B which is surjective as a map from
|A| to |B|.

Proposition B.1.1. Let A be an Q-algebra. For any S < S(A) there is B = A such that
|B‘ = mCeS |C|

Definition B.1.7. Let A be an Q-algebra, S € S(A). The subalgebra B = A such that
IB| = (News |C| is called the intersection subalgebra of S and noted by []S.

Definition B.1.8. Let A be an Q-algebra, X < |A|. The subalgebra of A
A*=[|yes)xcyy (B.2)
is called the subalgebra of A generated by X.

Remark B.1.3. For an Q-algebra A and X < |A|, AX is the smallest subalgebra of A whose

set contains X.

Remark B.1.4. For an Q-algebra A, X < |A] is the set of a subalgebra of A if and only if
X =|A¥|.

Definition B.1.9. We say that an Q-algebra A is generated by X < |A| if A = A*.
Remark B.1.5. A = A* if and only if A is the only subalgebra of A whose set contains X.
Definition B.1.10. Let f € Set(I, O(Set)). The set

X f = {w e Bet(1,uime()) | 2() e (i)} (B.3)

is called the cartesian product of f.

For i € I the maps
p s X = f()

are called the projections of Xf.
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Notation B.1.6. If C is a category by saying that (c,)._ is a family of elements of C

i€l

we understand that there is f € Set(I, O(C)) such that for i e I f(i) = c,.

The cartesian product of a family of sets (S,),, will also be written as

€

Si (B.5)

Lemma B.1.1. If (A,).a is a small FAMILY of Q-algebras, let (P, (7)) € | [iat|Ai|l. There
is an Q-algebra P such that |P| = P, the m; are Q-algebra homomorphisms, and (P, (7))

is an inverse product of the A, in Q-Alg. For s € || the operation sp is defined by

e ((T:)icars)) = 8 (((Ti3) je1)icars)) = (sA((xij)iear(s)))jeI' (B.6)
Proof. Routine check. M

Lemma B.1.2. Let h,, h,eQ-Alg(A,B), and let (E, i) be the standard equalizer of h, and

h, as set maps, that is

E = {ze|A|[h,(z) = h,(2)} (B.7)
and
i:E—|A] (B3)

Then E = |A®| and i is an Q-algebra homomorphism.

Proof. Routine check. e
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Appendix C

Properties of a universe

A set U is a universe if
1. zeyelU = zeU
2. 2eU AyeU = {x,y}elU, <x,y>U, z x yeU
3. xeU=P(x)eU, uzelU
4. welU

5. if f: & — y is surjective, xeU and y < U then yeU
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Appendix D
Symbols

o T,

o U

e C 9 quotient category of category C

® (a,), 4 collection of objects as indexed by the set S

e Set: category of sets

e Grp: category of groups

e Ab: category of abelian groups

e Alg_: category of T-algebras.

e Alg, ,: category of T-algebras over T-algebra A.

e 02: null morphism from a to b.

e Psh: Category of presheaves

e Psh,: Category of presheaves on topological space X

e Psh ) Category of presheaves of category C on topological space X
e Psh’ : Category of presheaves of T-algebras on topological space X

e Pshy . Category of presheaves of T-algebras over A on topological space X
e Sh: Category of sheaves

e Sh,: Category of sheaves on topological space X

e Sh, .: Category of sheaves of category C con topological space X
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D. Symbols

Sh ,: Category of sheaves of T-algebras on topological space X

ShY . ,: Category of sheaves of T-algebras over A on topological space X
SS: Category of sheaf spaces

SSy: Category of sheaf spaces on topological space X

SS - Category of sheaf spaces of T-algebras con topological space X

Sh Category of sheaf spaces of T-algebras over A on topological space X

X
X category associated to topological space X

g% functor associated to continuous map ¢

X?: underlying set f topological space X

X7 family of open sets of topological space X

S*: discrete category of set S

0: trivial subgroup {0} of Z, trivial abelian group
F,: object function of functor F

F.,: morphism function of functor F

Y(&,U): set of sections of sheaf space £ over open U
B: base T-algebra of T-algebra over A B

ap: structure map of T-algebra over A B

[f]a: subobject of a defined by morphism f

[f]2: superobject of a defined by morphism f



Appendix E

Questions

e If two morphisms of presheaves agree on the stalk at x, do they agree on a neigh-
bourhood of its?
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