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Appendix A

Some facts on categories and limits

A.1 Comma categories

Definition A.1.1. Let C be a category and c P OpCq.
The comma category pcÓCq of objects of C under c is defined by

OppcÓCqq “ tpu,dq|d P OpCq, u P Cpc,dqu (A.1)

and

pcÓCq ppu1, c1q, pu2, c2qq “ tf P Cpc1, c2q|f ˝ u1 “ u2u; (A.2)

the comma category pCÓcq of objects of C over c is defined by

OppCÓcqq “ tpd, uq|d P OpCq, u P Cpd, cqu (A.3)

and

pCÓcq ppc1, u1q, pc2, u2qq “ tf P Cpc1, c2q|u2 ˝ f “ u1u. (A.4)

Definition A.1.2. Let F:CÑD be a functor and d P OpDq.
The comma category pdÓFq of objects of C F-under d is defined by

OppdÓFqq “ tpu, cq|c P OpCq, u P Dpd,Fpcqqu (A.5)

and

pdÓFq ppu1, c1q, pu2, c2qq “ tf P Cpc1, c2q|Fpfq ˝ u1 “ u2u; (A.6)

the comma category pFÓdq of objects of C F-over d is defined by

OppFÓdqq “ tpc, uq|c P OpCq, u P DpFpcq,dqu (A.7)

and

pFÓdq ppc1, u1q, pc2, u2qq “ tf P Cpc1, c2q|u2 ˝ Fpfq “ u1u. (A.8)

5



6 A. Some facts on categories and limits

A.2 Universal arrows and limits

Proposition A.2.1. Let C and D be categories, d P OpDq. There is a functor CC,D
d such

that for c P OpCq

CC,D

d pcq “ d (A.9)

and for f PMpCq

CC,D

d pfq “ idd . (A.10)

Proof. Routine check. z

Definition A.2.1. Let C and D be categories, d P OpDq. The functor CC,D
d is called the

constant functor from C to D relative to the object d.

Proposition A.2.2. Let C and D be categories, f PMpDq. There is a natural transfor-

mation γ C,D

f : CC,D

dompfq Ñ CC,D

codpfq such that for c P OpCq

γ C,D

f c
“ f. (A.11)

Proof. Routine check. z

Definition A.2.2. Let C and D be categories, f PMpDq. The natural transformation

γ C,D

f is called the constant natural transformation from CC,D

dompfq to CC,D

codpfq relative

to the morphism f .

Proposition A.2.3. Let C and D be categories, d1 P OpDq d2 P OpDq. If τ : CC,D
d1

Ñ CC,D
d2

is a natural transformation, then there exists f P Dpd1,d2q such that τ “ γ C,D

f .

Proof. For c1 P OpCq, c2 P OpCq and g P homCpc1, c2q the diagram

CC,D
d1
pc1q

CC,D
d1

pgq
//

τc1

��

CC,D
d1
pc2q

τc2

��
CC,D

d2
pc1q

CC,D
d2

pgq
// CC,D

d2
pc2q

(A.12)

must commute. But CC,D
d1
pc1q “ CC,D

d1
pc2q “ d1, CC,D

d2
pc1q “ CC,D

d2
pc2q “ d2, CC,D

d1
pgq “ idd1 ,

CC,D
d2
pgq “ idd2 , so τc2

˝ idd1 “ idd2
˝τc1

, that is τc2
“ τc1

. This holds for any c1 P OpCq and

c2 P OpCq, thus τ “ γ C,D
τc1

. z

Proposition A.2.4. Let J, C be categories. There is a functor ∆C
J : C Ñ CJ defined by:

• ∆C
J pcq “ CJ,C

c for c P OpCq

• ∆C
J pfq “ γ J,C

f for f PMpCq.
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Proof. Routine check. z

Definition A.2.3. Let J, C be categories. The functor ∆C
J is called the diagonal functor

in C relative to J. The category J is called the index category for the diagonal

functor ∆C
J .

Definition A.2.4. Let F:CÑD be a functor, d P OpDq. An arrow from d to F is a

pair pc, uq where c P OpCq, u P Dpd,Fpcqq.

Remark A.2.1. According to Definition A.2.4 a pair pc, uq is an arrow from d P OpDq to

the functor F:CÑD if

1. c P OpCq

2. dompuq “ d

3. codpuq “ F pcq.

Notation A.2.1. Let C be a category, F:CÑSet. We will denote with CrFs the category

defined by

OpCrFsq “ tpc, xq|c P OpCq, x P Fpcqu (A.13)

and

CrFs ppc1, x1q, pc2, x2qq “ tf P C pc1, c2q |Fpfqpx1q “ x2u. (A.14)

Definition A.2.5. Let F:CÑD be a functor, d P OpDq. Two arrows pc1, u1q, pc2, u2q from

d to F are isomorphic if there is an isomorphism i : c1 Ñ c2 such that u2 “ F piq ˝ u1.

Definition A.2.6. Let F:CÑD be a functor, d P OpDq. An arrow pc, uq from d to F is

universal if and only if for any arrow pc˚, u˚q from d to F there is a unique morphism

f : c Ñ c˚ such that u˚ “ Fpfq ˝ u, that is, the diagram

d u //

u˚

!!

Fpcq

Fpfq

��
Fpc˚q

(A.15)

commutes.

Proposition A.2.5. Let F:CÑD be a functor, d P OpDq. An arrow pc, uq from d to F

is universal if and only if pc, uq is an initial object in the category pdÓFq.

Proof. Routine check. z
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Definition A.2.7. Let F:CÑSet be a functor. A universal element of F is a pair

pc, xq, where c P OpCq and x P Fpcq, and for every d P OpCq and y P Fpdq there is a

unique f : c Ñ d such that y “ Fpfqpxq.

Proposition A.2.6. Let F:CÑD be a functor, d P OpDq. An arrow pc, uq from d to F

is universal if and only if it is a universal element of the functor Dpd,F´q.

Proof. Routine check. z

Proposition A.2.7. Let F:CÑSet be a functor. A pair pc, xq is a universal element of

F if and only if for any one-element set ˚, if u : ˚ Ñ Fpcq is the map defined by up˚q “ x,

then pc, uq is a universal arrow from ˚ to F.

Proof. Routine check. z

Proposition A.2.8. Let F:CÑSet be a functor. A pair pc, xq is a universal element of

F if and only if it is an initial object in the category CrFs.

Proof. Routine check. z

Proposition A.2.9. Let F:CÑD be a functor, d P OpDq. An arrow pc, uq from d to F

is universal if and only if the maps

φpc,uqc˚
: Cpc, c˚q Ñ Dpd,Fpc˚qq

f ÞÑ Fpfq ˝ u

define a natural isomorphism φpc,uq between the hom-functors C pc,´q and D pd,Fp´qq.

Proof. The statement that the map φpc,uqc˚
is a bijection for each c˚ is exactly the statement

that pc, uq is a universal arrow from d to F. Now, if g P Cpc1, c2q the diagram

Cpc, c1q
φ
pc,uq
c1 //

Cpc,gq
��

Dpd,Fpc1qq

Dpd,Fpgqq
��

Cpc, c2q
φ
pc,uq
c2 //Dpd,Fpc2qq

(A.16)

commutes because, for f P Cpc, c1q

Dpd,Fpgqq
`

φpc,uqc1
pfq

˘

“ Dpd,Fpgqq pFpfq ˝ uq “ Fpgq ˝ Fpfq ˝ u

and

φpc,uqc2

`

Cpc, gqpfq
˘

“ φpc,uqc2
pf ˝ gq “ Fpf ˝ gq ˝ u “ Fpgq ˝ Fpfq ˝ u.

so φpc,uq is a natural transformation.

z
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Definition A.2.8. Let pc, uq be a universal arrow. The natural isomorphism φpc,uq is

called the natural isomorphism associated to pc, uq.

Proposition A.2.10. Let pc, uq be a universal arrow. Then u “ φpc,uqc pidcq.

Proof. Let pc, uq be a universal arrow to the functor F. Then φpc,uqc pidcq “ Fpidcq˝u “ u z

Notation A.2.2. For a natural transformation φ : Cpc,´q Ñ F set uφ “ φcpidcq.

Proposition A.2.11. Let F:CÑD be a functor, c P OpCq, d P OpDq, φ a natural iso-

morphism between the functors C pc,´q and D pd,F´q. Then pc, uφq is a universal arrow

from d to F and φ “ φpc,u
φq.

Proof. Let f P C pc, c˚q. Since the diagram

Cpc, cq
φc //

Cpc,fq
��

Dpd,Fpcqq

Dpd,Fpfqq
��

Cpc, c˚q
φc˚ //Dpd,Fpc˚qq

(A.17)

commutes, in particular φc˚

`

Cpc, fqpidcq
˘

“ Dpd,Fpfqq pφcpidcqq, so for each c P OpCq
and f P C pc, c˚q φc˚

pfq “ Fpfq ˝ uφ. By Proposition A.2.9 pc, uφq is a universal arrow

from d to F. z

Corollary A.2.1. Let F:CÑD be a functor, d POpDq. An arrow pc, uq from d to F is

universal if and only if there is a natural bijection φ : Cpc,´q Ñ Dpd,F´q and u “ φcpidcq.

Proposition A.2.12. Any two universal arrows from an object d P OpDq to a functor

F:CÑD are isomorphic.

Proof. Let pc1, u1q and pc2, u2q both be universal arrows from d to F. Then, since pc1, u1q

is universal there is f : c1 Ñ c2 such that u2 “ Fpfq ˝ u1 and, since pc2, u2q is universal,

there is g : c2 Ñ c1 such that u1 “ Fpgq ˝ u2. So u1 “ Fpgq ˝ Fpfq ˝ u1 “ Fpg ˝ fq ˝ u1

whence g ˝ f “ idc1 , because pc1, u1q is universal. Also u2 “ Fpfq ˝Fpgq ˝ u2 “ Fpf ˝ gq ˝ u2

whence f ˝ g “ idc2 , because pc2, u2q is universal. So f is an isomorphism. z

Lemma A.2.1 (Yoneda). A natural transformation ϕ : Cpc,´q Ñ F is completely deter-

mined by uϕ. More specifically, let NC : SetC
ˆCÑSet be the functor defined by

• NCpF, cq “ SetpCpc,´q,Fq for c P OpCq,F P OpSetC
q

• NCpτ, fq “ SetpCpf,´q, τq

and EC : SetC
ˆCÑSet the functor defined by

• ECpF, cq “ Fpcq
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• ECpτ, fq “ τcod fpdom τpfqq.

Then there is a natural isomorphism y : NC Ñ EC defined for F P OpSetC
q and c P OpCq

by

yF,c : NC
pF, cq Ñ EC

pF, cq

ϕ ÞÑ uϕ
. (A.18)

Proof. That ϕ : Cpc,´qF Ñ is completely determined by uϕ follows from the commutative

diagram

Cpc, cq
ϕc //

Cpc,fq
��

Fpcq

Fpfq

��
Cpc,dq

ϕd // Fpdq

(A.19)

which yields

ϕdpfq “ Fpfqpuϕq. (A.20)

So yF,c is a bijection for F P OpSetC
q and c P OpCq.

Let’s show that y is natural in F. For τ : F1 Ñ F2 we have to show that the diagram

NCpF1, cq
yF1,c //

NCpτ,cq
��

ECpF1, cq

ECpτ,cq
��

NCpF2, cq
yF2,c // ECpF2, cq

(A.21)

commutes. This can be rewritten as

SetC
pCpc,´q,F1q

yF1,c //

SetCpCpc,´q,τq
��

F1pcq

τc

��
SetC

pCpc,´q,F2q
yF2,c // F1pcq

(A.22)

and this commutes because for α P SetC
pCpc,´q,F1q

τc ˝ yF1,c
pαq “ τcpu

α
q (A.23)

and

yF2,c
˝ SetC

pCpc,´q, τqpαq “ yF2,c
pτ ˝ αq “ pτ ˝ αq

c
pidcq “ τcpu

α
q. (A.24)

Let’s show that y is natural in c. For f : c1 Ñ c2 we have to show that the diagram

NCpF, c1q
yF,c1 //

NCpF,fq
��

ECpF, c1q

ECpF,fq
��

NCpF, c2q
yF,c2 // ECpF, c2q

(A.25)
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commutes. This can be rewritten as

SetC
pCpc1,´q,Fq

yF,c1 //

SetCpCpf,´q,Fq
��

Fpc1q

Fpfq

��
SetC

pCpc2,´q,Fq
yF,c2 // Fpc2q

(A.26)

and this commutes because for α P SetC
pCpc1,´q,Fq

Fpfq ˝ yF,c1
pαq “ Fpfqpuαq (A.27)

and

yF,c2
˝ SetC

pCpf,´q,Fqpαq “ yF,c2

`

α ˝Cpf,´q
˘

“

“
`

α ˝Cpf,´q
˘

c2
pidc2

q “ αc2
pidc2

˝fq “ αc2
pfq (A.28)

and by Equation A.20

αc2
pfq “ Fpfqpuαq. (A.29)

z

Lemma A.2.2. Let C be a category, F:CÑSet a functor and ˚ a set with only one

element. Then there is a natural isomorphism

ϕF : Setp˚,F´q Ñ F (A.30)

defined for each c P OpCq and f : ˚ Ñ Fpcq by

ϕF

c pfq “ fp˚q. (A.31)

Proof. Just a routine check. z

Definition A.2.9. Let C be a category, F:CÑSet. A representation of F is a pair

pr, ψq where r P OpCq and ψ is a natural isomorphism between Cpr,´q and F. The object

r is called a representing object of F. A functor is said to be representable if a

representation of its exists.

Lemma A.2.3. The functors Cpc1,´q, Cpc2,´q are naturally isomorphic if and only if

the object c1 and c2 are isomorphic.

Proof. If i : c1 Ñ c2 is an isomorphism, then it is easy to check that ψ : Cpc1,´q Ñ

Cpc2,´q defined for c P OpCq by ψc : Cpc1, cq Ñ Cpc2, cq as ψcpfq “ fi´1 is a natural

isomorphism.
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Let ψ : Cpc1,´q Ñ Cpc2,´q be a natural isomorphism. Set i “ φc1
pidc1

q, j “ φ´1
c2
pidc2

q.

From the commutative diagram

Cpc1 c1q
ψc1 //

Cpc1,jq
��

Cpc2, c1q

Cpc2,jq
��

Cpc1 c2q
ψc2 // Cpc2, c2q

(A.32)

we have

ψc2

`

Cpc1, jq pidc1
q
˘

“ ψc2
pj idc1

q “ idc2
“ Cpc2, jq pψc1

pidc1
qq “ ji (A.33)

and from the commutative diagram

Cpc2 c2q
ψ´1
c2 //

Cpc2,iq
��

Cpc1, c2q

Cpc1,iq
��

Cpc2 c1q
ψ´1
c1 // Cpc1, c1q

(A.34)

we have

ψ´1

c1

`

Cpc2, iq pidc2
q
˘

“ ψ´1

c1
pi idc2

q “ idc1
“ Cpc1, iq

`

ψ´1

c2
pidc2

q
˘

“ ij. (A.35)

z

Proposition A.2.13. Let F:CÑSet and ˚ a set with one element. If pr, uq is a universal

arrow from ˚ to F then there is a representation pr, ψq of F defined for c P OpCq and

f : r Ñ Fpcq by ψcpfq “ Fpfqpup˚qq.

Proof. By Proposition A.2.9 if pr, uq is a universal arrow from ˚ to F then there is a

natural isomorphism ψ : Cpr,´q Ñ Setp˚,F´q such that for c P OpCq and f : r Ñ c

ψcpfq “ Fpfqu. The thesis then follows from Lemma A.2.2. z

Proposition A.2.14. Let F:CÑSet. Then ψ : Cpr,´q Ñ F is a representation of F if

and only if pr, uψq is an initial object of CrFs.

Proof. Let ψ : Cpr,´q Ñ F be a representation of F. If pc, vq P OpCrFsq then v P Fpcq so

let f “ ψ´1
c pvq. Since the diagram

Cpr, rq
ψr //

Cpr,fq
��

Fprq

Fpfq

��
Cpr, cq

ψc // Fpcq

(A.36)

commutes we have

Fpfq ˝ ψrpidrq “ Fpfqpuψq “ ψc ˝Cpr, fqpidrq “ ψcpfq “ v (A.37)



2. Universal arrows and limits 13

so f P CrFsppr, uψq, pc, vqq. If g P CrFsppr, uψq, pc, vqq then v “ Fpgqpuψq and ψcpgq “

Fpgqpuψq “ v, so g “ f since ψc is a bijection. Thus pr, uψq is an initial object of pCrFsq.

Let pr, uψq be an initial object of pCrFsq, let’s show that ψ is a natural isomorphism. If

c P OpCq and v P Fpcq there is exactly one morphism f : pr, uψq Ñ pc, vq, and v “ Fpfquψ

so v “ ψcpfq. z

Definition A.2.10. Let F:CÑD be a functor, d P OpDq. An arrow from F to d is a

pair pc, uq where c P OpCq, u P DpFpcq,dq.

Definition A.2.11. Let F:CÑD be a functor, d P OpDq. Two arrows pc1, u1q, pc2, u2q

from F to d are isomorphic if there is an isomorphism i : c1 Ñ c2 such that u1 “ u2˝Fpiq.

Definition A.2.12. Let F:CÑD be a functor, d P OpDq. An arrow pc, uq from F to d

is universal if and only if for any arrow pc˚, u˚q from F to d there is a unique morphism

f : c˚ Ñ c such that u˚ “ u ˝ Fpfq, that is, the diagram

F pcq u // d

F pc˚q

F pfq

OO
u˚

== (A.38)

commutes.

Proposition A.2.15. Any two universal arrows from a functor F:CÑD to an object

d P OpDq are isomorphic.

Proof. Let pc1, u1q and pc2, u2q both be universal arrows from to F d. Then, since pc1, u1q

is universal there is f : c2 Ñ c1 such that u1 “ F pfq ˝ u2, and since pc2, u2q is universal

there is g : c1 Ñ c2 such that u2 “ F pgq ˝ u1. So u1 “ F pfq ˝ F pgq ˝ u1 “ F pf ˝ gq ˝ u1

whence f ˝g “ idc1 , because pc1, u1q is universal. Also u2 “ F pgq ˝F pfq ˝u2 “ F pg ˝fq ˝u2

whence g ˝ f “ idc2 , because pc2, u2q is universal. So g is an isomorphism. z

ADD HERE PROPOSITIONS AND COROLLARIES AS FOR UNIVER-

SAL ARROWS FROM OBJECTS TO FUNCTORS

A.2.1 Direct limits

Definition A.2.13. Let F:JÑC be a functor. A direct target for F is an arrow from

F to the diagonal functor ∆C
J .

Remark A.2.2. According to this definition, a direct target for the functor F:JÑC is a

pair pc, τq where c P OpCq and τ is a natural transformation τ : F Ñ CJ,C
c . That is, for
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j P OpJq, τj : F pjq Ñ c, and for any j1 P OpJq and j2 P OpJq and any g : j1 Ñ j2 the

diagram

F pj1q
F pgq //

τj1

""

F pj2q
τj2

||
c

(A.39)

commutes.

Definition A.2.14. Let F:JÑC be a functor. A direct limit for F is a universal arrow

from F to the diagonal functor ∆C
J .

Definition A.2.15. If pc, τq is a direct limit for the functor F, then c is a direct limit

object for F and τ is a direct limit cone for F.

Remark A.2.3. According to Definition A.2.15, a direct limit for the functor F:JÑC is a

direct target pc, τq for F such that if pc˚, τ˚q is any direct target for F, there is a unique

morphism f : c Ñ c˚ such that τ˚ “ γ J,C

f ˝ τ , that is the diagram

F τ //

τ˚

  

CJ,C
c

γ J,C
f
��

CJ,C

c˚

(A.40)

commutes, that is, for j P OpJq the diagram

Fpjq
τj //
τ˚j

!!

c

f
��

c˚

(A.41)

Commutes. More in details, for any j1 P OpJq and j2 P OpJq and any g : j1 Ñ j2 the

diagram

F pj1q

F pgq

��

τj1 !!

τ˚j1

''
c f // c˚

F pj2q

τj2

==

τ˚j2

77

(A.42)

commutes.

Proposition A.2.16. Let F:JÑC be a functor, d POpCq. An inverse target pl, λq to F

is a limit of F if and only if there is a natural bijection φ : C pl,´q Ñ CJ
`

F,∆J
C´

˘

and

λ “ φlpidlq.



2. Universal arrows and limits 15

Proof. Straightforward from Corollary A.2.1. z

Proposition A.2.17. Any two direct limits for a functor are isomorphic.

Proof. A direct consequence of Proposition A.2.12 z

Notation A.2.3. We will write

lim
ÝÑ

F (A.43)

for the isomorphism class of the direct limit of the functor F.

Proposition A.2.18. Let F:JÑC, G:JÑC be functors, τ : F Ñ G, pf , φq P lim
ÝÑ

F,

pg, ψq P lim
ÝÑ

G. Then there is a unique morphism h : f Ñ g such that ψ ˝ τ “ γ J,C

h ˝φ, that

is, the diagram

F τ //

φ
��

G

ψ
��

CJ,C
f

γ J,C
h

// CJ,C
f

(A.44)

commutes, or, more in details, for each j P OpJq ψj ˝ τj “ h ˝ φj, that is, for each j P OpJq
the diagram

F pjq
τj //

φj
��

Gpjq

ψj

��
f

h
// g

(A.45)

commutes.

Proof. Let ψ˚ “ ψ ˝ τ . Then pg, ψ˚q is a direct target for F, so there is a unique morphism

h : f Ñ g such that ψ˚ “ γ J,C

h ˝ φ, that is, ψ ˝ τ “ γ J,C

h ˝ φ. z

Definition A.2.16. Let F:JÑC, g :JÑC be functors, τ : F Ñ G, pf , φq P lim
ÝÑ

F, pg, ψq P

lim
ÝÑ

G, h : f Ñ g such that ψ ˝τ “ γ J,C

h ˝φ. Then h is called a direct limit for the natural

transformation τ .

Notation A.2.4. Let F:JÑC, G:JÑC be functors, τ : F Ñ G. We will write

lim
ÝÑ

rτ, pf, φq, pg, ψqs (A.46)

for the direct limit of τ relative to the direct limits pf , φq of F and pg, ψq of G.

Proposition A.2.19. Let F:JÑC, G:JÑC , τ : F Ñ G a natural transformation,

h1 “ lim
ÝÑ

rτ, pf 1, φ1q, pg1, ψ1qs, h2 “ lim
ÝÑ

rτ, pf 2, φ2q, pg2, ψ2qs. If i : f 1 Ñ f 2 and j : g1 Ñ g2

are isomorphisms such that φ2 “ γ J,C

i ˝ φ1 and ψ2 “ γ J,C

j ˝ ψ1, then j ˝ h1 “ h2 ˝ i. In

particular, any two direct limits of τ are equivalent.
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Proof. We have ψ2 ˝ τ “ γ J,C

j ˝ ψ1 ˝ τ “ γ J,C

j ˝ γ J,C

h1 ˝ φ1 “ γ J,C

j˝h1 ˝ φ
1 “ γ J,C

h2 ˝ φ2 “

γ J,C

h2 ˝ γ J,C

i ˝ φ1 “ γ J,C

h2˝i ˝ φ
1:

F

φ2

��

φ1

��

τ // G

ψ1

��
ψ2

��

CJ,C

f1

γ J,C
i}}

γ J,C

h1 // CJ,C

g1

γ J,C
j !!

CJ,C

f2

γ J,C

h2 // CJ,C

g2

Since pg2, ψ2 ˝ τq is a direct target for F, there is only one morphism k : f 1 Ñ g2 such that

γ J,C

k ˝ φ1 “ ψ2 ˝ τ , so j ˝ h1 “ h2 ˝ i follows. z

Proposition A.2.20. Let F:JÑC, G:JÑC be functors, τ : F Ñ G, σ : F Ñ G, and

suppose

lim
ÝÑ

rτ, pf , φq, pg, ψqs “ lim
ÝÑ

rσ, pf , φq, pg, ψqs

for certain direct limits pf , φq of F and pg, γq of G. Then

lim
ÝÑ

rτ, pf 1, φ1q, pg1, ψ1qs “ lim
ÝÑ

rσ, pf 1, φ1q, pg1, ψ1qs

for any direct limits pf 1, φ1q of F and pg1, ψ1q of G.

Proof. Let

h “ lim
ÝÑ

rτ, pf , φq, pg, ψqs “ lim
ÝÑ

rσ, pf , φq, pg, ψqs

t “ lim
ÝÑ

rτ, pf 1, φ1q, pg1, ψ1qs

s “ lim
ÝÑ

rσ, pf 1, φ1q, pg1, ψ1qs;

If i : f Ñ f 1 and j : g Ñ g1 are isomorphisms such that φ1 “ γ J,C

i ˝ φ and ψ1 “ γ J,C

j ˝ ψ,

then j ˝ h “ t ˝ i and j ˝ h “ s ˝ i, whence t “ s. z

Notation A.2.5. Let F:JÑC, G:JÑC be functors, τ : F Ñ G. We will write

lim
ÝÑ

τ (A.47)

for the equivalence class of direct limits of τ .

Proposition A.2.21. If every functor from J to C has a direct limit, there is a functor

lim
ÝÑ

:CJ
ÑC q.

Proof. A direct consequence of Propositions A.2.18 and A.2.19. z
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Proposition A.2.22. Let F:JÑC be a functor. If J has a terminal object t, for j P OpJq
let fj be the unique element of Jpj, tq, t˚ “ Fptq, τ : F Ñ CJ,C

t˚
the natural transformation

defined, for j P OpJq, by τj “ Fpfjq. Then pt˚, τq is a direct limit for F.

Proof. Of course pt˚, τq is a direct target for F. Let ps, σq be a direct target for F. Then

σt : t˚ Ñ s and for j P OpJq we have σj “ σt ˝ τj. If g : t˚ Ñ s is such that for j P OpJq
we have σj “ g ˝ τj, then in particular σt “ g ˝ τt, but τt “ F pftq “ F pidtq “ idt˚ , so

g “ σt. z

Definition A.2.17. Let F:AÑB, G:BÑC be functors. We say that G creates direct

limits for F if for every direct limit pc, τq of G˝F there exists a unique direct limit pb, σq

of F such that

• Gpbq “ c

• @a P OpAq τa “ Gpσaq.

Definition A.2.18. A direct equalizer in a category C is a direct limit for a functor

F:JÑC where J is a category of type t¨ Ñ ¨u.

Remark A.2.4. Let F:JÑC where

1. OpJq “ ta,bu

2. Jpa,bq “ tg1, g2u

and let pe, τq be a direct equalizer for F. Then the following diagram commutes

Fpaq
Fpg1q //

Fpg2q

//

τa
%%

Fpbq

τb

��
e

that is, τa “ τb ˝ Fpg1q “ τb ˝ Fpg2q, and if pf , σq is a direct target for F, which means

that σa “ σb ˝ Fpg1q “ σb ˝ Fpg2q, then there is a unique morphism h : e Ñ f such that

σa “ h ˝ τa and σb “ h ˝ τb. So we can restate the definition of direct equalizer in the

following terms, that refer to a pair of parallel morphisms rather than to a functor. The

morphism i : d Ñ e is a ditect equalizer for the pair of parallel morphisms f1 : c Ñ d and

f2 : c Ñ d if

• i ˝ f1 “ i ˝ f2

• for any morphism j : d Ñ f such that j ˝ f1 “ j ˝ f2 there is a unique morphism

h : e Ñ f such that j “ h ˝ i.

Proposition A.2.23. If i : b Ñ e is a direct equalizer then i is epi.
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Proof. Let i : b Ñ e be a direct equalizer for the pair f1 : a Ñ b and f2 : a Ñ b. Let

g1 : e Ñ f and g2 : e Ñ f be such that g1 ˝ i “ g2 ˝ i. Let h “ g1 ˝ i “ g2 ˝ i. Then

h ˝ f1 “ h ˝ f2, so there’s a unique g : e Ñ f such that h “ g ˝ i. Then g1 ˝ i “ g2 ˝ i implies

g1 “ g2. z

Lemma A.2.4. Let C and D be categories, F:CÑD, G:CÑD, f : F Ñ G, g : F Ñ G

and for each c P OpCq let hc be a direct equalizer for the pair fc, gc. Then there exists a

functor Eh :CÑD such that for c P OpCq Ehpcq “ codphcq and for k P Cpc1, c2q Ehpkq is

the unique morphism such that the diagram

Gpc1q
hc1 //

Gpkq

��

Ehpc1q

Ehpkq
��

Gpc2q
hc2 // Ehpc2q

commutes, and a natural transformation eh : D Ñ Eh such that for c P OpCq ehc “ hc.

Proof. We have

hc2
˝Gpkq ˝ fc1

“ hc2
˝ fc2

˝ Fpkq “ hc2
˝ gc2

˝ Fpkq “ hc2
˝Gpkq ˝ gc1

so there is a unique morphism Ehpkq : Ehpc1q Ñ Ehpc2q such that hc2
˝Gpkq “ Ehpkq ˝ hc1

.

Since the diagram

Gpcq

idGpcq

��

hc // Ehpcq

id
Ehpcq

��
Gpcq

hc // Ehpcq

commutes, then Ehpidcq “ idEhpcq.

The diagram

Gpc1q

Gpk1q ##
Gpk2˝k1q

��

hc1 // Ehpc1q

Ehpk1qzz
Gpc2q

Gpk2q

{{

hc2 // Ehpc2q

Ehpk2q

$$
Gpc3q

hc3 // Ehpc3q

commutes, so

hc3
˝Gpk2 ˝ k1q “ hc3

˝Gpk2q ˝Gpk1q “ Eh
pk2q ˝ hc2

˝Gpk1q “ Eh
pk2q ˝ Eh

pk1q ˝ hc1

that is, Ehpk2 ˝ k1q “ Ehpk2q ˝ Ehpk1q.

That the morphisms hc define a natural transformation follows immediately. z
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Proposition A.2.24. Let C and D be categories, F:CÑD, G:CÑD, f : F Ñ G,

g : F Ñ G and for each c P OpCq let hc be a direct equalizer for the pair fc, gc. Then the

natural transformation eh is a direct equalizer for the pair f, g.

Proof. If k : G Ñ K is such that k ˝ f “ k ˝ g, then, for each c P OpCq, kc ˝ fc “ kc ˝ gc,

so there is a unique ic : Hpcq Ñ Kpcq such that kc “ ic ˝ hc. The morphisms ic define a

natural transformation from H to K since, for a morphism j P Cpc1, c2q, the diagram

Gpc1q
hc1 //

Gpjq

��

Hpc1q
ic1 //

Hpjq

��

Kpc1q

Kpjq

��
Gpc2q

hc2 // Hpc2q
ic2 // Kpc2q

commutes because

ic2
˝ Hpjq ˝ hc1

“ ic2
˝ hc2

˝Gpjq “ kc2
˝Gpjq “ Kpjq ˝ kc1

“ Kpjq ˝ ic1
˝ hc1

whence, since hc1
is an epimorphism, ic2

˝ Hpjq “ Kpjq ˝ ic1
. z

Lemma A.2.5. Let τ be an algebraic type, a P OpAlgτ q and e an equivalence relation on

a. Then the following conditions are equivalent

1. The set a{e can be given an algebraic structure in such a way that the map

p : a Ñ a{e

x ÞÑ rxs
e

is a morphism in Algτ

2. There are b P OpAlgτ q and f : a Ñ b such that e “ tpx, yq P aˆ a | fpxq “ fpyqu

3. e is a subalgebra of aˆ a.

Proof.

Let’s prove that 1.ñ 2. The object a{e and the map p in 1. satisfy the conditions stated

in 2. for b and f .

Let’s prove that 2.ñ 3. Let ω P τo, and pxi, yiq P e for i “ 1 . . . nω. Then

f pωapx1, . . . , xnωqq “ ωapfpx1q, . . . , fpxnωqq “

“ ωapfpy1q, . . . , fpynωqq “

“ f pωapy1, . . . , ynωqq

that is pωapx1, . . . , xnωq, ωapy1, . . . , ynωqq P e, but

ωaˆa ppx1, y1q, . . . , pxnω , ynωqq “ pωapx1, . . . , xnωq, ωapy1, . . . , ynωqq
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thus ωaˆa ppx1, y1q, . . . , pxnω , ynωqq P e.

Let’s prove that 3. ñ 1. Let ω P τo and xi, yi P a for i “ . . . , nω such that rxis “ ryis for

i “ . . . , nω. Then pxi, yiq P e for i “ . . . , nω, and ωaˆa ppx1, y1q, . . . , pxnω , ynωqq P e, that is

pωapx1, . . . , xnωq, ωapy1, . . . , ynωqq P e or rωapx1, . . . , xnωqs “ rωapy1, . . . , ynωqs. This allows to

define ωa{eprx1s, . . . , rxnω sq “ rωapx1, . . . , xnωqs. z

Definition A.2.19. Let τ be an algebraic type, a P OpAlgτ q. A congruence on a is an

equivalence relation on a that is a subalgebra of aˆ a.

Lemma A.2.6. Let τ be an algebraic type, a P OpAlgτ q. The intersection of any family

of congruences on a is a congruence on a.

Proof. Routine check. z

Definition A.2.20. Let τ be an algebraic type, a P OpAlgτ q, r Ď rˆ r. The intersection

of all the congruences on a that contains r is the congruence generated by r and will

be denoted by xry.

Proposition A.2.25. Let τ be an algebraic type, a P OpAlgτ q, r Ď aˆ a, pa the map

pa : a Ñ a{xry

x ÞÑ rxsxry.

Then for any morphism f : a Ñ b such that fpxq “ fpyq for each px, yq P r there is a

unique morphism f˚ : a{xry Ñ b such that f “ f˚ ˝ pa.

Proof. The set

s “ tpx, yq P aˆ a | fpxq “ fpyqu .

is a congruence on a, thus xry Ď s. If for x, y P a rxsxry “ rysxry, then px, yq P xry whence

px, yq P s, thus fpxq “ fpyq. This means that it is possible to define

f˚ : a{xry Ñ b

rxsxry ÞÑ fpxq

and f “ f˚ ˝ pa.

If g : s{xry Ñ b is such that f “ g ˝ pa, let u P a{xry; then u “ rxsxry for some x P a, so

gpuq “ g
`

rxsxry
˘

“ fpxq “ f˚
`

rxsxry
˘

“ f˚puq. z

Notation A.2.6. For a pair f1 : a Ñ b, f2 : a Ñ b of parallel morphisms in Algτ set

r0pf1, f2q “ tpx, yq P bˆ b | Dz P a : x “ fpzq ^ y “ gpzqu

and

rpf1, f2q “ xr0pf1, f2qy.
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Notation A.2.7. For a morphism f : a Ñ b in Algτ set

eqpfq “ tpx, yq P aˆ a | fpxq “ fpyqu .

Proposition A.2.26. For a pair f1 : a Ñ b, f2 : a Ñ b of parallel morphisms in Algτ

let e “ rpf1, f2q and

j : b Ñ b{e

x ÞÑ rxse.

Then j is a direct equalizer for the pair f1, f2.

Proof. A straightforward consequence of Proposition A.2.25. z

Corollary A.2.2. In Algτ there is a direct equalizer for any pair of parallel morphisms.

Proposition A.2.27. In Algτ the morphism j : b Ñ e is a direct equalizer for a pair

f1 : a Ñ b and f2 : a Ñ b of parallel morphisms if and only if it is surjective and Coi j “

b{rpf1, f2q.

Proof. Let j be a direct equalizer for the pair f1, f2. Since

i : b Ñ b{rpf1, f2q

x ÞÑ rxsrpf1,f2q

is also a direct equalizer for f1 and f2, there is an isomorphism h : e Ñ b{rpf1, f2q and

j “ h ˝ i. Thus j is surjective and Coipjq “ Coipiq “ b{rpf1, f2q.

Let j be surjective and Coipjq “ b{rpf1, f2q. Then j ˝ f1 “ j ˝ f2. If h : b Ñ f is such

that h ˝ f1 “ h ˝ f2, then let t P e; if s1 P b and s2 P b are such that jps1q “ jps2q, then

ps1, s2q P eqpjq “ rpf1, f2q, thus, since rpf1, f2q Ď eqphq, hps1q “ hps2q. So we can define

h1 : e Ñ f

t ÞÑ hpsq

where s P b is such that t “ jpsq. It follows that h “ h1 ˝ j. If k : e Ñ f is such that

h “ k˝j, let y P e; then y “ jpsq for some s P e, thus kpyq “ kpjpsqq “ hpsq, so k “ h1. z

Definition A.2.21. Let C be a category with a null object, f P Cpa,bq. A cokernel of

f is a direct equalizer for the pair of parallel morphisms f and 0a
b. We shall denote with

cokpfq any cokernel of f , and call codpcokpfqq a cokernel object of f .

Proposition A.2.28. If C is a category with a null object 0 and f P MpCq is an epi-

morphism, then 0codpfq
0 is a cokernel of f . It follows that any cokernel object of f is a null

object.
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Proof. Let f : a Ñ b, and let g : b Ñ c be such that g ˝ f “ 0a
c, thus g ˝ f “ 0b

c ˝ f ;

since f is an epimorphism, this yields g “ 0b
c , thus there is a unique 00

c : 0 Ñ c such that

g “ 00
c ˝ 0b

0. z

Proposition A.2.29. If C is an ab-category with a null object and f PMpCq is such that

any cokernel object of f is a null object, then f is an epimorphism

Proof. Let f : a Ñ b, and g : b Ñ c, h : b Ñ c such that g˝f “ h˝f . Then g˝f´h˝f “

0a
c, whence pg ´ hq ˝ f “ 0a

c, g ´ h “ 0b
c and g “ h. z

Proposition A.2.30. Let C and D be categories, F,G:CÑD, H,K:DCÑDC, f : F Ñ G,

h : H Ñ K. If the functors HpFq, HpGq, KpFq, KpGq have direct limits respectively lHF “

plHF, λHFq, lHG “ plHG, λHGq, lKF “ plKF, λKFq, lKG “ plKG, λKGq, the diagram

lHF
lim
ÝÑ

rHpfq,lHF,lHGs
//

lim
ÝÑ

rhF,l
HF,lKFs

��

lHG

lim
ÝÑ

rhG,l
HG,lKGs

��
lKF

lim
ÝÑ

rKpfq,lKF,lKGs
// lKG

commutes.

Proof. For each c P OpCq we have

lim
ÝÑ

rKpfq, lKF, lKG
s ˝ lim
ÝÑ

rhF, l
HF, lKF

s ˝ λHF

c “ lim
ÝÑ

rKpfq, lKF, lKG
s ˝ λKF

c ˝ phFqc “

“ λKG

c ˝Kpfqc ˝ phFqc “

“ λKG

c ˝ phGqc ˝ Hpfqc “

“ lim
ÝÑ

rhG, l
HG, lKG

s ˝ λHG

c ˝ Hpfqc “

“ lim
ÝÑ

rhG, l
HG, lKG

s ˝ lim
ÝÑ

rHpfq, lHF, lHG
s ˝ λHF

c

whence the thesis follows. z

Theorem A.2.1 (Construction of direct limits by direct products and binary

direct equalisers). For categories C, D, if D has binary direct equalisers and every

functor from OpCq˚ and from MpCq˚ to D has a direct product, then every functor from

C to D has a direct limit.

In particular, let F1 :OpCq˚ÑD be defined by

F1
pcq “ Fpcq (A.48)

and F2 :MpCq˚ÑD by

F2
puq “ Fpdompuqq; (A.49)

let f1, f2 :
š

F2 Ñ
š

F1 be defined by

i
š

F1

dompuq “ f1i
š

F2

u for u PMpCq (A.50)
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and

i
š

F1

codpuqFpuq “ f2i
š

F2

u for u PMpCq (A.51)

and let pe, kq be a direct equalizer for f1 and f2, and

mc “ k i
š

F1

c for c P OpCq. (A.52)

Then there is a natural transformation ε : F Ñ CC,D
e such that for c P OpCq εc “ mc and

pe, εq is a direct limit of F.

Proof. As shown in the commutative diagram

F2puq

i
š

F2

u
��

i
š

F1

dompuq

%%
š

F2
f1 //

f2

//
š

F1

F2puq

i
š

F2

u

OO

Fpuq// F1pcoduq

i
š

F1

codpuq

OO

(A.53)

for u P MpCq both i
š

F1

domu and Fpuqi
š

F1

codu factor uniquely through i
š

F2

u , so there are f1, f2

such that

i
š

F1

domu “ f1i
š

F1

u (A.54)

and

i
š

F1

coduFpuq “ f2i
š

F2

u (A.55)

for each u PMpCq.
If v P Cpc1, c2q

mc2
Fpvq “ k i

š

F1

c2
Fpvq “ k f2 i

š

F2

v “ k f1 i
š

F1

v “ k i
š

F1

c1
“ mc1

(A.56)

so there is a natural transformation ε : F Ñ CC,D
e such that for c P OpCq εc “ mc, and

pe, εq is a direct target of F.

If pt, τq is another direct target for F then τ as a natural transformation in DOpCq˚ factors

through γ OpCq˚,D
h for a unique morphism h :

š

F1 Ñ t, as F coincides with F1 on the objects.

But τ is also a natural transformation in DC, so for each v : c1 Ñ c2 we have τc1
“ τc2

Fpvq

and thus

τc1
“ hi

š

F1

c1
“ hf1i

š

F2

v “ τc2
Fpvq “ hi

š

F1

c2
Fpvq “ hf2i

š

F2

v (A.57)

whence hf1 “ hf2. Thus h factors uniquely through k and τ factors uniquely through

ε. z
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A.2.2 Inverse limits

Definition A.2.22. Let F:JÑC be a functor. An inverse target for F is an arrow

from the diagonal functor ∆C
J to F.

Remark A.2.5. According to this definition, an inverse target for the functor F:JÑC is

a pair pc, τq where c P OpCq and τ is a natural transformation τ : Cc Ñ F. That is, for

j P OpJq, τj : c Ñ F pjq, and for any j1 P OpJq and j2 P OpJq and any g : j1 Ñ j2 the

diagram

c
τj1

!!

τj2

}}
Fpj1q

Fpgq // Fpj2q

(A.58)

commutes.

Definition A.2.23. Let F:JÑC be a functor. An inverse limit for F is a universal

arrow from the diagonal functor ∆C
J to F.

Definition A.2.24. If pc, τq is an inverse limit for the functor F, then c is an inverse

limit object for F and τ is an inverse limit cone for F.

Remark A.2.6. According to this definition, am inverse limit for the functor F:JÑC is an

inverse target pc, τq for F such that if pc˚, τ˚q is any inverse target for F, there is a unique

morphism f : c˚ Ñ c such that τ˚ “ τ ˝ rf s, that is the diagram

Cc
τ // F

Cc˚

τ˚
>>

rf s

OO (A.59)

commutes. More in details, for any j1 P OpJq and j2 P OpJq and any g : j1 Ñ j2 the

diagram

Fpj1q

Fpgq

��

c˚

τ˚j1
77

τ˚j2 ''

f // c

τj1

==

τj2

!!
Fpj2q

(A.60)

commutes.

Proposition A.2.31. Any two inverse limits for a functor are isomorphic.

Proof. A direct consequence of Proposition A.2.15 z
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Notation A.2.8. We will write

lim
ÐÝ

F (A.61)

for the class of isomorphism of the inverse limit of the functor F.

Proposition A.2.32. Let F:JÑC be a functor. If J has an initial object i, for j P OpJq let

fj be the unique element of Jpi, jq, i˚ “ F piq, and τ : Ci˚ Ñ F the natural transformation

defined, for j P OpJq, by τj “ Fpfjq. Then pi˚, τq is an inverse limit for F.

Proof. Of course pi˚, τq is an inverse target for F. Let ps, σjq be an inverse target for F.

Then σi : s Ñ i˚ and for j P OpJq we have σj “ τj ˝ σi. If g : s Ñ i˚ is such that for

j P OpJq we have σj “ τj ˝ g, then in particular σi “ τi ˝ g, but τi “ Fpfiq “ Fpidiq “ idi˚ ,

so g “ σi. z

Definition A.2.25. Let F:AÑB, F :BÑC be functors. We say that G creates inverse

limits for F if for every inverse limit pc, τq of G ˝ F there exists a unique inverse limit

pb, σq of F such that

• Gpbq “ c

• @a P OpAq τa “ Gpσaq.

Definition A.2.26. An inverse product in a category C is an inverse limit for a functor

F:IÑC where I is a discrete category.

Notation A.2.9. The isomorphism class of inverse products for the functor F will be noted

by

ź

F.

Remark A.2.7. Being a discrete category essentially a set, a functor having a discrete

category as its domain can be described as a collection of objects in the codomain

category. Thus pciqiPI means that the ci are objects of a category, say C, I is a set, and

there is a functor, say F:I˚ÑC, such that ci “ Fpiq for each i P I.

A natural transformation between two collections of objects pciqiPI and pdiqiPI of the same

category is just a collection of morfisms pfiqiPI such that fi : ci Ñ di for each i P I.

An inverse product of pciqiPI is a pair pp, τq, where p P OpCq and τ “ pτiqiPI is a collection

of morphisms τi : p Ñ ci, such that for any pair pq, σq where q P OpCq and σ “ pσiqiPI

with σi : q Ñ ci, there is a unique morphism f : q Ñ p such that σi “ τi ˝ f for each i P I.

Using this notation the isomorphism class of inverse products for the collection pciqiPI will

be noted by

ź

iPI

ci.
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If

pp, πq P
ź

iPI

ci,

pr, ρq P
ź

iPI

di,

and τ is a natural transformation between pciqiPI and pdiqiPI, then its inverse limit relative

to pp, πq and pr, ρq is a morphism t : p Ñ r such that τi ˝ πi “ ρi ˝ τ for each i P I.

Remark A.2.8. In Set, a collection pAiqiPI has always an inverse product p
ś

iPIAi, pq where
ś

iPI Ai is the usual cartesian product of the sets Ai and p “ ppiqiPI is the collection of the

projections onto the factors Ai. That is,
ś

iPIAi is the set of maps

f : I Ñ
ď

iPI

Ai

i ÞÑ fi

such that fi P Ai for i P I; such an element of
ś

iPI Ai is usually written as pfiqiPI; and

pj :
ź

iPI

Ai Ñ Aj

pfiqiPI ÞÑ fj.

It is easily verified that p
ś

iPIAi, ppiqiPIq has the required properties for an inverse product

of pAiqiPI in Set.

Proposition A.2.33. Let I be a set, C a category with inverse products, and F:I˚ˆI˚ÑC.

For i P I set Fi :I
˚ÑC by Fipjq “ Fpi, jq for pj P Iq, and pπi, σiq P

ś

Fi. Set F
1

:I˚ÑC as

F
1

piq “ πi for i P I and let pα, τq P
ś

F
1

. Set ρ : CI˚ˆI˚,C
α Ñ F defined for pi, jq P I ˆ I by

ρpi,jq “ pσiqjτi.

Then pα, ρq P
ś

F.

Proof. Let pβ, µq P
ś

F. It will suffice to show that µ factors through ρ.

For i P I set εi : CI˚,C
β Ñ Fi defined for j P I by pεiqj “ µpi,jq. Then each εi factors uniquely

through σi, εi “ σiϕi. Since each ϕi : CI˚,C
β Ñ CI˚,C

πi
is a natural transformation between

constant functors, it is a constant natural transformation, that is there is a morphism

ϕ
1

i : β Ñ πi such that pϕiqj “ ϕ
1

i for j P I, and these morphisms define a natural transfor-

mation ϕ
1

: CI˚,C
β Ñ F

1

which factors uniquely through τ , h
1

“ τk, where k : CI˚,C
β Ñ CI˚,C

α

is also a constant natural transformation, so there is k
1

: β Ñ α such that ki “ k
1

for i P I.

Thus h
1

i “ τik
1

for each i P I, and ph
1

iqj “ τik
1

for each i, j P I, thus pεiqj “ pσiqjτik
1

, that

is, µ “ ργ I˚ˆI˚,C

k
1 . z

Definition A.2.27. An inverse equalizer in a category C is an inverse limit for a

functor F:JÑC where J is a category of type t¨ Ñ ¨u.
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Remark A.2.9. Let F:JÑC where

1. OpJq “ ta,bu

2. Jpa,bq “ tg1, g2u

and let pe, τq be an inverse equalizer for F. Then the following diagram commutes

Fpaq
Fpg1q //

Fpg2q

// Fpbq

e

τa

OO

τb

99

that is, τb “ Fpg1q ˝ τa “ Fpg2q ˝ τa, and if pf , σq is an inverse target for F, which means

that σb “ Fpg1q ˝ σa “ Fpg2q ˝ σa, then there is a unique morphism h : f Ñ e such that

σa “ τa ˝ h and σb “ τb ˝ h. So we can restate the definition of inverse equalizer in the

following terms, that refer to a pair of parallel morphisms rather than to a functor. The

morphism i : e Ñ c is an inverse equalizer for the pair of parallel morphisms f1 : c Ñ d

and f2 : c Ñ d if

• f1 ˝ i “ f2 ˝ i

• for any morphism j : f Ñ c such that f1 ˝ j “ f2 ˝ j there is a unique morphism

h : f Ñ e such that j “ i ˝ h.

Proposition A.2.34. If i : e Ñ a is an inverse equalizer then i is monic.

Proof. Let i : e Ñ a be an inverse equalizer for the pair f1 : a Ñ b and f2 : a Ñ b. Given

a morphism g : f Ñ e, for h “ i ˝ g also f1 ˝ h “ f2 ˝ h holds, so g is the only morphism

such that h “ i ˝ g. Then i ˝ g1 “ i ˝ g2 implies g1 “ g2. z

Lemma A.2.7. Let C and D be categories, F:CÑD, G:CÑD, f : F Ñ G, g : F Ñ G and

for each c P OpCq let hc : dc Ñ Fpcq be an inverse equalizer for the pair fc, gc. Then for

any morphism k : c1 Ñ c2 there is a unique morphism k̄ : dc1
Ñ dc2

such that the diagram

dc1

hc1 //

k̄
��

Fpc1q

Fpkq

��
dc2

hc2 // Fpc2q

commutes, that is hc2
˝ k̄ “ Fpkq ˝hc1

. In particular for each c P OpCq, idc “ iddc, and for

each pair of composable morphisms k1 : c1 Ñ c2, k2 : c2 Ñ c3, k2 ˝ k1 “ k̄2 ˝ k̄1.

Proof. We have

fc2
˝ Fpkq ˝ hc1

“ Gpkq ˝ fc1
˝ hc1

“ Gpkq ˝ gc1
˝ hc1

“ gc2
˝ Fpkq ˝ hc1
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so there is a unique morphism k̄ : dc1
Ñ dc2

such that Fpkq ˝ hc1
“ hc2

˝ k̄.

Since the diagram

dc

hc //

iddc

��

Fpcq

idFpcq

��
dc

hc // Fpcq

commutes, then idc “ iddc .

The diagram

dc1

k̄1

  

hc1 // Fpc1q

Fpk1q

{{
Fpk2˝k1q

��

dc2

k̄2~~

hc2 // Fpc2q

Fpk2q ##
dc3

hc3 // Fpc3q

commutes, so

Fpk2 ˝ k1q ˝ hc1
“ Fpk2q ˝ Fpk1q ˝ hc1

“ Fpk2q ˝ hc2
˝ k̄1 “ hc3

˝ k̄2 ˝ k̄1

that is, k2 ˝ k1 “ k̄2 ˝ k̄1. z

Proposition A.2.35. Let C and D be categories, F:CÑD, G:CÑD, f : F Ñ G,

g : F Ñ G and for each c P OpCq let hc : dc Ñ Fpcq be an inverse equalizer for the pair

fc, gc. Then there is a natural transformation h : H Ñ F that is an inverse equalizer for

the pair f, g and such that hc “ hc.

Proof. That the functor H exists, and that h is a natural transformation, is stated by

Lemma A.2.7. Let’s prove that h is an inverse equalizer for f, g. If k : K Ñ F is such that

f ˝k “ g ˝k, then, for each c P OpCq, fc ˝kc “ gc ˝kc, so there is a unique ic : Kpcq Ñ Hpcq

such that kc “ hc ˝ ic. The morphisms ic are the component of a natural transformation

from K to H since, for a morphism j P Cpc1, c2q, the diagram

Kpc1q
ic1 //

Kpjq

��

Hpc1q
hc1 //

Hpjq

��

Fpc1q

Fpjq

��
Kpc2q

ic2 // Hpc2q
hc2 // Fpc2q

commutes because

hc2
˝ Hpjq ˝ ic1

“ Fpjq ˝ hc1
˝ ic1

“ Fpjq ˝ kc1
“ kc2

˝Kpjq “ hc2
˝ ic2

˝Kpjq

whence, since hc2
is a monomorphism, Hpjq ˝ ic1

“ ic2
˝Kpjq. z
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Notation A.2.10. For a pair f1 : a Ñ b and f2 : a Ñ b of parallel morphisms in Algτ let

spf1, f2q be the subalgebra of a defined by

spf1, f2q “ tx P a | f1pxq “ f2pxqu . (A.62)

Proposition A.2.36. For a pair f1 : a Ñ b and f2 : a Ñ b of parallel morphisms in Algτ

let e “ spf1, f2q and

i : e Ñ a

x ÞÑ x.
(A.63)

Then i is an inverse equalizer for f1 and f2.

Proof. Of course f1 ˝ i “ f2 ˝ i. If j : d Ñ a is such that f1 ˝ j “ f2 ˝ j then Img j Ď e. Let

h : d Ñ e

t ÞÑ jptq.

Then j “ i ˝ h. If j “ i ˝ g, for t P d we have jptq “ ipgptqq “ gptq so g “ h. z

Corollary A.2.3. In Algτ there is an inverse equalizer for any pair of parallel morphisms.

Proposition A.2.37. In Algτ the morphism j : d Ñ a is an inverse equalizer for a

pair f1 : a Ñ b and f2 : a Ñ b of parallel morphisms if and only if it is injective and

Img j “ spf1, f2q.

Proof. Let j be am inverse equalizer for the pair f1, f2. Since

i : spf1, f2q Ñ a

x ÞÑ x

is also an inverse equalizer for f1 and f2, there is an isomorphism h : d Ñ pf1, f2q and

j “ h ˝ i. Thus j is injective and Imgpjq “ Imgpiq “ spf1, f2q.

Let j be injective and Img j “ spf1, f2q. The latter implies f1 ˝ j “ f2 ˝ j. If k : f Ñ a is

such that f1 ˝ k “ f2 ˝ k, let x P f and u “ kpxq, so f1puq “ f2puq, that is u P Imgpjq, so

there is a y P d such that u “ jpyq. This defines g : f Ñ d such that k “ j ˝ g. If also

k “ j ˝ h then g “ h, since j is injective. z

Definition A.2.28. Let C be a category with a null object, f P Cpa,bq. A kernel of f

is an inverse equalizer for the pair of parallel morphisms f and 0a
b. We shall denote with

kerpfq any kernel of f , and call dompkerpfqq a kernel object of f .

Proposition A.2.38. If C is a category with a null object and f PMpCq is a monomor-

phism, then any kernel object of f is a null object.
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Proof. Let f : a Ñ b, and let g : c Ñ a be such that f ˝ g “ 0c
b, thus f ˝ g “ f ˝ 0c

a;

since f is a monomorphism, this yields g “ 0c
a, thus there is a unique 0c

0 : c Ñ 0 such that

g “ 00
a ˝ 0c

0. z

Proposition A.2.39. If C is an ab-category with a null object and f PMpCq is such that

any kernel object of f is a null object, then f is a monomorphism

Proof. Let f : a Ñ b, and g : c Ñ a, h : c Ñ a such that f˝g “ f˝h. Then f˝g´f˝h “ 0c
b,

whence f ˝ pg ´ hq “ 0c
b, g ´ h “ 0c

a and g “ h. z

Theorem A.2.2 (Pointwise construction of inverse limits in functor categories).

If every functor from J to D has an inverse limit then for every C every functor from

J to DC has an inverse limit. Precisely, let φ :JÑDC. For c P OpCq define the functor

ψc :JÑD by

ψcpjq “ φpjqpcq for j P OpJq (A.64)

ψcpfq “ φpfqc for f PMpJq (A.65)

and suppose plc, πCq is an inverse limit for ψc. Then pΛ, γq is an inverse limit for φ, where

the functor Λ:CÑD is defined by

Λpcq “ lc (A.66)

and for f : c1 Ñ c2 Λpfq is the limit of the natural transformation Ωpfq : ψc1
Ñ ψc2

defined

for j P OpJq by

Ωpfqj “ φpjqpfq, (A.67)

and the natural transformation γ : CJ,DC

Λ Ñ φ is such that for j P OpJq γj : Λ Ñ φpjq is

the natural transformation defined for c P OpCq by

pγiqc “ pπcqj. (A.68)

Conversely, if pΛ, γq is an inverse limit of φ :JÑDC then for c P OpCq pΛpcq, πcq, where

πc are defined by A.68, is a limit of ψc as defined by A.64 and A.65.

Proof. Let us show that for c P OpCq ψc is indeed a functor.

If j P OpJq we have

ψcpidjq “ φpidjqc “ pidφpjqqc “ idφpjqpcq “ idψcpjq (A.69)

and for composable arrows g and f in MpJq

ψcpg ˝ fq “ φpg ˝ gqc “ φpgqc ˝ φpfqc “ ψcpfq ˝ ψcpgq. (A.70)
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Now to prove that Λ is a functor from C to D we need to prove first that for f : c1 Ñ c2

Ωpfq : ψc1
Ñ ψc2

is indeed a natural transformation.

For j1, j2 P OpJq let h : j1 Ñ j2. We have to prove that the diagram

ψc1
pj1q

Ωpfqj1 //

ψc1 phq

��

ψc2
pj1q

ψc2 phq

��
ψc2
pj2q

Ωpfqj2 // ψc2
pj2q

(A.71)

commutes, which it does because it can be rewritten as

φpj1qpc1q
φphqc1 //

φpj1qpfq

��

φpj2qpc1q

φpj2qpfq

��
φpj1qpc2q

φphqc2 // φpj2qpc2q

(A.72)

and this commutes because φphq is by definition a natural transformation from φpj1q to

φpj2q.

Now for c P OpCq and j P OpJq we have

Ωpidcqj “ φpjqpidcq “ idφpjqpcq “ idψcpjq (A.73)

thus

Ωpidcq “ idψc (A.74)

and

Λpidcq “ idΛpcq . (A.75)

For composable arrows g and f in MpCq and j P OpJq

Ωpg ˝ fqj “ φpjqpg ˝ fq “ φpjqpgq ˝ φpjqpfq “ Ωpgqj ˝ Ωpfqj (A.76)

so

Ωpg ˝ fq “ Ωpgq ˝ Ωpfq (A.77)

and

Λpg ˝ fq “ Λpgq ˝ Λpfq. (A.78)

Now let us show that for j P OpJq γj : Λ Ñ φpjq is a natural transformation.

Let c1, c2 P OpCq and h : c1 Ñ c2. Then the diagram

Λpc1q
pγjqc1//

Λpfq

��

φpjqpc1q

φpjqpfq

��
Λpc2q

pγjqc2// φpjqpc2q

(A.79)
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commutes because this is just the definition of Λpfq as inverse limit of Ωpfq.

Now let us show that γ : CC,DC

Λ Ñ φ is a natural transformation. For j1, j2 P OpJq and

h : j1 Ñ j2 the diagram

Λ
γj1 //

γj2   

φpj1q

φphq

��
φpj2q

(A.80)

commutes because for c P OpCq this diagram specifies as

Λpcq
pγj1 qc//

pγj2 qc $$

φpj1qpcq

φphqc
��

φpj2qpcq

(A.81)

which is by definition of γj

Λpcq
pπcqj1 //

pπcqj2 ##

ψcpj1q

ψcphq

��
ψcpj1q

(A.82)

So pΛ, γq is a target for φ. Let pΛ
1

, γ
1

q be another target for φ. Then

γ
1

: CJ,DC

Λ
1 Ñ φ (A.83)

is a natural transformation, and for j P OpJq

γ
1

j : Λ
1

Ñ φpjq (A.84)

is also a natural transformation. Define for c P OpCq π1c : CJ,D

Λ
1
pcq
Ñ ψc by pπ

1

cqj “ pγ
1

jqc.

Then π
1

c id a natural transformation. In fact, for f : j1 Ñ j2 the diagram

Λ
1

pcq
pπ
1

cqj1 //

pπ
1

cqj2 ##

ψcpj1q

ψcpfq

��
ψcpj2q

(A.85)

commutes because it can be rewritten as

Λ
1

pcq
pγ
1

j1
qc
//

pγ
1

j2
qc $$

φpj1qpcq

φpfqc
��

φpj2qpcq

(A.86)



2. Universal arrows and limits 33

and

Λ
1

γ
1

j1 //

γ
1

j2
!!

φpj1q

φpfq

��
φpj2q

(A.87)

commutes.

Thus for c P OpCq there is a unique ηc : Λ
1

pcq Ñ Λpcq such that the diagram

CJ,D

Λ
1
pcq

π
1

c //

γ J,D
ηc

��

ψc

CJ,D

Λpcq

πc

>> (A.88)

commutes, that is the diagram

Λ
1

pcq
pπ
1

cqj //

ηc

��

ψcpjq

Λpcq

pπcqj

;;
(A.89)

commutes for j P OpJq, which can be rewritten as

Λ
1

pcq
pγ
1

jqc //

ηc

��

φpjqpcq

Λpcq

pγjqc

::
(A.90)

Let’s prove that the ηc define a natural transformation η : Λ
1

Ñ Λ. Let c1, c2 P OpCq and

f : c1 Ñ c2. Since each γj is a natural transformation we have that for j P O J the diagram

Λ
1

pc1q
pγ
1

jqc1//

Λ
1
pfq
��

φpjqpc1q

φpjq

��
Λ
1

pc2q
pγ
1

jqc2// φpjqpc2q

(A.91)

commutes, which can be rewritten as

Λ
1

pc1q
pπ
1

c1
qj //

Λ
1
pfq
��

ψc1
pjq

Ωpfqj
��

Λ
1

pc2q
pπ
1

c2
qj // ψc2

pjq

(A.92)
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thus also the diagram of natural transformations

CJ,D

Λ
1
pc1q

π
1

c1 //

γ J,D

Λ
1
pfq

��

ψc1

Ωpfq

��
CJ,D

Λ
1
pc2q

π
1

c2 // ψc2

(A.93)

commutes. Set

ε “ Ωpfq ˝ π
1

c1
“ π

1

c2
γ J,D

Λ
1
pfq
. (A.94)

Then ε : CJ,D

Λ
1
pc1q
Ñ ψc2

, so there is a unique natural transformation σ : CJ,D

Λ
1
pc1q
Ñ CJ,D

Λpc2q
such

that ε “ πc2
˝ σ. But

πc2
˝ γ J,D

ηc2
˝ γ J,D

Λ
1
pfq
“ π

1

c2
˝ γ J,D

Λ
1
pfq
“ ε (A.95)

and, since Λpfq is a limit of Ωpfq

πc2
˝ γ J,D

Λpfq ˝ γ
J,D

ηc1
“ Ωpfqπc1

γ J,D

ηc1
“ Ωpfqπ

1

c1
“ ε (A.96)

thus

γ J,D

ηc2
˝ γ J,D

Λ
1
pfq
“ γ J,D

Λpfq ˝ γ
J,D

ηc1
(A.97)

that is the diagram

Λ
1

pc1q
ηc1 //

Λ
1
pfq
��

Λpc1q

Λpfq

��
Λ
1

pc2q
ηc2 // Λpc2q

(A.98)

commutes, and η is a natural transformation.

Thus for j P OpJq the diagram

Λ
1

γ
1

j //

η

��

φpjq

Λ

γj

==
(A.99)

commutes, and so does

CJ,DC

Λ
1

γ
1

//

γ J,DC

η
��

φ

CJ,DC

Λ

γ

>> (A.100)
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Now suppose η : Λ
1

Ñ Λ is also such as the diagram

CJ,DC

Λ
1

γ
1

//

γ J,DC

η
1

��

φ

CJ,DC

Λ

γ

>> (A.101)

commutes. Then for c P OC the diagram

CJ,D

Λ
1
pcq

π
1

c //

γ J,D

η
1
c ��

ψc

CJ,D

Λpcq

πc

>> (A.102)

commutes, and since ηc is uniquely determined this yelds η
1

c “ ηc for c P OpCq, and so

η
1

“ η.

Now suppose pΛ, γq is an inverse limit of φ. For c P OpCq the functor ψc has a limit, so

we can construct a limit pΛ
1

, γ
1

q of φ such that pΛ
1

pcq, π
1

cq is a limit of ψc. Then there is

a natural isomorphism i : Λ
1

Ñ Λ such that γ
1

“ γ ˝ γ J,DC

i , and so π
1

c “ πc ˝ γ
J,D

ic
, and

pΛpcq, πcq is a limit of ψc. z

Proposition A.2.40. Let C be a category. For every c P OpCq the hom-functor Cpc,´q

preserves inverse limits.

Proof. Let F:JÑC and pl, λq an inverse limit of F. Let’s show that
`

Cpc, lq,Cpc, µq
˘

is an

inverse limit of Cpc,F´q.

Of course
`

Cpc, lq,Cpc, µq
˘

is an inverse target of Cpc,F´q.

Let pX, τq be an inverse target of Cpc,F´q, so τ : CJ,Set
X Ñ Cpc,F´q. If f P Jpi, jq

then τj “ Cpc,Fpfqqτi, so for xPX τjpxq“Fpfqτipxq, which implies that the τjpxq are the

components of a natural transformation τ x : CJ,C
c Ñ F, and pc, τ xq is an inverse target of

F. Thus there is a unique morphism f x : c Ñ l such that τ x “ µγ J,C

fx . The morphisms f x

define a morphism f : X Ñ Cpc, lq by fpxq “ f x, and for j P OpJq we have τj “ Cpc, µjqf

and finally τ “ Cpc, µqγ J,Set

f .

If g : X Ñ Cpc, lq also is such that τ “ Cpc, µqγ J,Set
g then for j P OpJq we have τj “ µjg

and for x P X τjpxq “ µjgpxq, so g “ f . z

Lemma A.2.8. If a functor F preserves inverse limits and G is naturally isomorphic to

F then G also preserves inverse limits.

Proof. Let F:CÑD, H:JÑC, pl, λq a limit of H, suppose that F preserves inverse limits

and that φ : F Ñ G is a natural isomorphism.
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Let pm, µq be an invesre target of GH. Then for j P OpJq φ´1
Hpiqµi P Dpm,FHpiqq, thus,

since F preserves inverse limits, there is a unique morphism f P Dpm,Fplqq such that

φ´1

Hpiqµi “ Fλif. (A.103)

Set g “ φlf . Then g P Dpm,Gplqq and Gλig “ Gλiφlf “ φHpiqFλif “ µi, whence µ “

Gλγ J,D
g .

If h P Dpm,Gplqq is also such that µ “ Gλγ J,D

h , then for j P OpJq Fλjφ
´1
l h “ φ´1

HpiqGλjh “

φ´1
Hpjqµj. Since f is the unique morphism satisfying Eq. A.103, φ´1

l h “ f and h “ φlf “

g. z

Corollary A.2.4. A representable functor preserves inverse limits.

Proof. Straightforward from Proposition A.2.40, Lemma A.2.8, and the definition of rep-

resentable functor. z

Theorem A.2.3 (Inverse-completeness of Set). If J is a small category then every functor

from J to Set has an inverse limit plF, λFq where

lF
“ SetJ

pCJ,Set

t0u ,Fq (A.104)

and for jPOpJq, τ P lF

λF

j pτq “ τjp0q. (A.105)

Proof. Since J is a small category SetJ
pCJ,Set

t0u ,FqPOpSetq.

Let’s show that λF is a natural transformation. If f P Jpi, jq then for τ P lF, since τ is a

natural transformation

λF

j pτq “ τjp0q “ Fpfqτip0q “ FpfqλF

i pτq (A.106)

thus λF
j “ FpfqλF

i .

Let’s show that plF, λFq is a universal arrow.

If σPSetJ
pCJ,Set

X ,Fq let for xPX σxPSetJ
`

CJ,Set

t0u ,F
˘

defined for jPOpJq by σxj p0q “ σjpxq.

Tus we have a map

h : X Ñ SetJ
pCJ,Set

t0u ,Fq

x ÞÑ σx
(A.107)

such that for xPX and jPOpJq λF
j phpxqq “ λF

j pσ
xq “ σxj p0q “ σjpxq, thus λF

j h “ σj.

If also k : X Ñ SetJ
pCJ,Set

t0u ,Fq is such that λF
j k “ σj for j POpJq, then for j POpJq and

xPX λF
j pkpxqq “ kpxqjp0q “ σjpxq “ σxj p0q, thus kpxq “ σx and k “ h. z
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A.3 Pullbacks and pushouts

Definition A.3.1. A pulllback is a limit of a functor F:CÑD where

• OpCq “ tc1, . . . , cn,du

• MpCq “ tf1, . . . , fnu where fi : ci Ñ d.

Remark A.3.1. If pp, πq is a pullback of F:CÑD then for i “ 1, . . . , n πd “ Fpfiq ˝ πci
, so

a pullback equalises all the morphisms Fpfiq ˝ πci
. If pp

1

, π
1

q is also a pullback of F then

there is a unique h : p
1

Ñ p such that π
1

“ π ˝ γ C,D

h .

It can be useful to refer to a pullback of a finite set of morphisms. If for i “ 1, . . . , n

fi : ci Ñ d are morphisms of a category C with a common codomain, then pp, π1, . . . , πnq

is a pullback of f1, . . . , fn if

• fi ˝ πi “ fj ˝ πj for i “ 1, . . . , n, j “ 1, . . . , n

• if pp
1

, π1, . . . , π
1

nq is such that fi ˝ π
1

i “ fj ˝ π
1

j for i “ 1, . . . , n, j “ 1, . . . , n then there

is a unique h : p
1

Ñ p such that π
1

i “ πi ˝ h for i “ 1, . . . , n.

Likewise, it can be useful to say that a diagram like

p h //

k

��

b

f
��

c
g // d

(A.108)

is a pullback, meaning that pp, h, kq is a pullback of f, g.

Lemma A.3.1. A morphism f : a Ñ b is a monomorphism if and only if the diagram

a
ida //

ida

��

a

f
��

a
f // b

(A.109)

is a pullback.

Proof. Just a check. z

Proposition A.3.1. If a category has binary inverse products and inverse equalisers then

it has pullbacks.

Proof. Let f1 : a1 Ñ b, f2 : a2 Ñ b, p1 and p2 the projections from a1

ś

a2, and k : e Ñ

a1

ś

a2 an inverse equaliser of f1p1, f2p2. Let’s show that pe, p1k, p2kq is a pullback of f1, f2.

Of course f1p1k “ f2p2k. If h1 : d Ñ a1, h2 : d Ñ a2 are such that f1h1 “ f2h2 then there

is h
1

: d Ñ a1

ś

a2 such that h1 “ p1h
1

, h2 “ p2h
1

and f1p1h
1

“ f1h1 “ f2h2 “ f2p2h
1

so there

is h : d Ñ e such that h
1

“ kh and thus h1 “ p1kh, h2 “ p2kh.

If h˚ : d Ñ e is also such that h1 “ p1kh
˚, h2 “ p2kh

˚, then h
1

“ kh˚, because h
1

is

uniquely determined, and h˚ “ h because the factorisation of h
1

through k is unique. z
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Proposition A.3.2. If a category C has binary pullbacks then every natural transforma-

tion τ in C is a monomorphism if and only if τc is a monomorphism for every c P OpCq.

Proof. Let F,G:BÑC, and τ : F Ñ G. By Theorem A.2.2 CB has binary pullbacks, and

by Lemma A.3.1 the diagram

F
idF //

idF
��

F

τ
��

F τ // G

(A.110)

is a pullback in CB. Then again by Theorem A.2.2 for every c P OpCq the diagram

Fpcq
pidFqc //

pidFqc

��

Fpcq

τc
��

Fpcq
τc // Gpcq

(A.111)

is a pullback in C, so by Lemma A.3.1 τc is a monomorphism.

Conversely, if for every c P OpCq τc is a monomorphism, then for every c P OpCq the

diagram A.111 is a pullback, and so is diagram A.110 and τ is a monomorphism. z

A.4 Preorders

Definition A.4.1. A preorder P is a category such that for any pair of objects p1,p2 of

P there is at most one morphism from p1 to p2.

Notation A.4.1. If P is a preorder and p1, p2 are objects of P such that Ppp1,p2q ‰ H,

we will write

p1 ď p2. (A.112)

If p1 ď p2 we will denote with

xp1,p2y (A.113)

the unique element of Ppp1,p2q. If F:PÑC is a functor and p1 ď p2 then we will set

Fp1
p2
“ Fpxp1,p2yq. (A.114)

Definition A.4.2. A preorder P is directed if for any pair of objects p1,p2 of P there is

an object q of P such that p1 ď q and p2 ď q.

Lemma A.4.1. Let P be a preorder, F:PÑSet a functor and pt, τq a direct target for F

such that
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(1) @t P t Dp P OpPq : t P Impτpq ?????

(2) @p1 P OpPq @p2 P OpPq @t1 P Fpp1q @t2 P Fpp2q

τp1
pt1q “ τp2

pt2q ðñ Dq P OpPq : p1 ď q^ p2 ď q^ Fp1
q pt1q “ Fp2

q pt2q.

Then pt, τq is a direct limit for F.

Proof. Let ps, σq be any direct target for F. If t P t, then by (1) t “ τppsq for some object

p of P and some element s of Fppq. We will show that σppsq depends only on t, that is, if

t “ τqpuq also holds for some object q of P and some element u of Fpqq, then σqpuq “ σppsq.

Indeed, by (2) there is an object r of P such that p ď r, q ď r and Fp
r psq “ Fq

r puq, so

σqpuq “ σrpF
q

r puqq “ σrpF
p

r psqq “ σppsq. (A.115)

Then we can define a morphism in Set

f : t Ñ s

t ÞÑ σppsq
(A.116)

where p and s are any object of P and any element of Fppq such that t “ τppsq. If p

is any object of P then by the very definition of f we have σp “ f ˝ τp. If g : t Ñ s

is any morphism in Set such that, for any object p of P, σp “ g ˝ τp holds, then for

t P t such that t “ τppsq for some object p of P and some element s of Fppq we have

gptq “ gpτppsqq “ σppsq “ fptq, that is, g “ f . z

Proposition A.4.1. If P is a directed preorder for any functor F:PÑSet there is a direct

target for F which satisfies conditions (1) and (2) of Lemma A.4.1.

Proof. Let

t0 “
ď

pPOpPq

tpu ˆ Fppq. (A.117)

On the set to define the relation „ by:

pp1, s1q „ pp2, s2q ðñ Dq P OpPq : p1 ď q^ p2 ď q^ Fp1
q ps1q “ Fp2

q ps2q. (A.118)

Then „ is an equivalence relation .

Indeed, it is clearly reflexive and symmetric. Suppose pp1, s1q „ pp2, s2q and pp2, s2q „

pp3, s3q. Then there are objects q1 and q2 of P such that p1 ď q1, p2 ď q1, p2 ď q2,

p3 ď q2 and Fp1
q1
ps1q “ Fp2

q1
ps2q and Fp2

q2
ps2q “ Fp3

q2
ps3q. But since P is directed there is

r such that q1 ď r and q2 ď r, and Fp1
r ps1q “ Fq1

r pF
p1
q1
ps1qq “ Fq1

r pF
p2
q1
ps2qq “ Fp2

r ps2q “

Fq2
r pF

p2
q2
ps2qq “ Fq2

r pF
p3
q2
ps3qq “ Fp3

r ps3q, so „ is transitive.

Let t “ t0{ „. For p P OpPq set

τp : Fppq Ñ t

s ÞÑ rpp, sqs .
(A.119)
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If p,q are objects of P and p ď q, and s P p, then

τqpF
p

qpsqq “
“

pq,Fp

qpsqq
‰

and

τppsq “ rpp, sqs .

But Fp
qpsq “ Fq

qpF
p
qpsqq whence

“

pq,Fp
qpsqq

‰

“ rpp, sqs and τp “ τq ˝ Fp
q, so pt, τq is a direct

target for F.

If t P t then t “ rpp, sqs for some p P OpPq and some s P Fppq, so t “ τppsq.

If τppsq “ τqpuq for some objects p,q of P and some s P Fppq and u P Fpqq, then

rpp, sqs “ rpq, uqs, which means that there is r P OpPq such that p ď r, q ď r and

Fp
r psq “ Fq

r puq. z

Corollary A.4.1. If P is a directed preorder every functor F:PÑSet has a direct limit.

Proposition A.4.2. If P is a directed preorder, a direct target pt, τq for the functor

F:PÑSet is a direct limit if and only if it satisfies conditions (1) and (2) of Lemma

A.4.1.

Proof. In Lemma A.4.1 was already proved that a direct target pt, τq for F satisfying (1)

and (2) is a direct limit for F.

Suppose that pt, τq is a direct limit for F. By Proposition A.4.1 there is a direct limit pl, λq

for F which satisfies (1) and (2). Let f : l Ñ t be the unique bijection such that for every

p P OpPq τp “ f ˝ λp.

Let t P t. Then t “ fplq for some l P l, and l “ λppsq for some p P OpPq and some

s P F ppq, so t “ τppsq.

Let p P OpPq, q P OpPq, u P Fppq, v P Fpqq such that τppuq “ τqpvq; then fpλppuqq “

fpλppvqq whence λppuq “ λppvq; so there is r P OpPq such that p ď r, q ď r and

Fp
r puq “ Fq

r pvq. z

Definition A.4.3. Let P be a directed preorder, F:PÑ Set a functor. We call the

standard direct limit of F the direct limit constructed as in Proposition A.4.1 by

(A.117), (A.118) and (A.119).

Proposition A.4.3. The forgetful functor U: GrpÑ Set creates direct limits for any

functor from a directed preorder.

Proof. Let P be a directed preorder, F:PÑGrp and H “ U ˝F. Let ps, τq P lim
ÝÑ

H. For x1

and x2 in s let x1 “ τp1
ps1q, x2 “ τp2

ps2q for p1 P OpPq, p2 P OpPq, s1 P Fpp1q, s2 P Fpp2q.

If q P OpPq is such that p1 ď q and p2 ď q, let’s show that τqpF
p1
q ps1qF

p2
q ps2qq does not
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depend on q. Let q1 P OpPq such that p1 ď q1 and p2 ď q1, and q2 P OpPq such that

p1 ď q2 and p2 ď q2. Then there is r P OpPq such that q1 ď r and q2 ď r, so

τq1
pFp1

q1
ps1qF

p2
q1
ps2qq “ τrpF

q1
r pF

p1
q1
ps1qF

p2
q1
ps2qqq “

“ τrpF
q1
r pF

p1
q1
ps1qqF

q1
r pF

p2
q1
ps2qqq “

“ τrpF
p1
r ps1qF

p2
r ps2qq “

“ τrpF
q2
r pF

p1
q2
ps1qqF

q2
r pF

p2
q2
ps2qqq “

“ τrpF
q2
r pF

p1
q2
ps1qF

p2
q2
ps2qqq “

“ τq2
pFp1

q2
ps1qF

p2
q2
ps2qq.

Let’s prove that τqpF
p1
q ps1qF

p2
q ps2qq with p1 ď q and p2 ď r does not depend either on

p1,p2 and s1, s2.

If also x1 “ τo1
pt1q, x2 “ τo2

pt2q for o1 P OpPq, o2 P OpPq, t1 P Fpo1q, t2 P Fpo2q, then

there is q P OpPq such that o1 ď q, o2 ď q, p1 ď q, p2 ď q and Fo1
q pt1q “ Fp1

q ps1q,

Fo2
q pt2q “ Fp2

q ps2q, so τqpF
o1
q pt1qF

o2
q pt2qq “ τqpF

p1
q ps1qF

p2
q ps2qq.

For x1 and x2 in s we can now define their product x1x2 “ τqpF
p1
q ps1qF

p2
q ps2qq where p1, p2

are objects of P and s1 P Fpp1q, s2 P Fpp2q such that x1 “ τp1
ps1q and x2 “ τp2

ps2q, and q

is an object of P such that p1 ď q and p2 ď q.

If also x3 “ τp3
ps3q then for q such that p1 ď q, p2 ď q, p3 ď q

x1px2x3q “ τqpF
p1
q ps1qpF

p2
q ps2qF

p3
q ps3qqq “

“ τqppF
p1
q ps1qF

p2
q ps2qqF

p3
q ps3qq “

“ px1x2qx3.

If eq is the unit element of Ppqq, then let x “ τppsq and r P OpPq such that q ď r and

p ď r; we have τqpeqqx “ τrpF
q
r peqqF

p
r psqq “ τrperF

p
r psqq “ τrpF

p
r psqq “ τppsq “ x. So τqpeqq

is the unit element es of s, for any object q in P.

If x “ τppsq, and ep is the unit element of Pppq, then xτpps
´1q “ τppss

´1q “ τppepq “ es

and τpps
´1qx “ τpps

´1sq “ τppepq “ es, so τpps
´1q “ x´1. z

Proposition A.4.4. The forgetful functor U: AlgτÑSet creates direct limits for any

functor from a directed preorder.

Proof. Under construction. z

Definition A.4.4. Let P be a directed preorder, F:PÑAlgτ a functor, U: AlgτÑSet

the forgetful functor for Algτ . We call the standard direct limit of F the direct limit

a such that Upaq is the direct limit of U ˝F in Set constructed as in Proposition A.4.1 by

(A.117), (A.118) and (A.119), given the algebraic structure τ as in Proposition A.4.4.



42 A. Some facts on categories and limits

Proposition A.4.5. If P is a directed preorder, a direct target pt, τq for the functor

F:PÑAlgτ is a direct limit if and only if it satisfies conditions (1) and (2) of Lemma

A.4.1.

Proof. Obvious. z

Lemma A.4.2. Let P be a directed preorder, F:PÑSet. If pg, γq is a direct limit for F

then:

1. for y P g there are p P OpPq and s P Fppq such that y “ γppsq;

2. if for p1 P OpPq, p2 P OpPq, s1 P Fps1q, s2 P Fps2q γp1
ps1q “ γp2

ps2q then there is

q P OpPq such that p1 ď q and p2 ď q, and Fp1
q ps1q “ Fp2

q ps1q.

Proof. Let pf , φq be the standard direct limit of F. There is an isomorphism i : f Ñ g such

that for p P OpPq i ˝ φp “ γp.

Let x P f such that y “ ipxq. Since pf , φq is the standard direct limit of F there are

p P OpPq and s P Fppq such that x “ φppsq, thus y “ ipφppsqq “ γppsq.

If γp1
ps1q “ γp2

ps2q then ipφp1
ps1qq “ ipφp2

ps2qq, thus φp1
ps1q “ φp2

ps2q. Since pf , φq is

the standard direct limit of F there is q P OpPq such that p1 ď q and p2 ď q, and

Fp1
q ps1q “ Fp2

q ps1q. z

Proposition A.4.6. Let P be a directed preorder, F and G functors from P to Set, τ a

natural transformation from F to G such that, for each p P OpPq, τp is injective. Then

any direct limit of τ is injective.

Proof. Let τ̄ be the direct limit of τ relative to the direct limits pf , φq of F and pg, γq

of G. If x1 P f and x2 P f are such that τ̄px1q “ τ̄px2q, by Lemma A.4.2 there are

p1 P OpPq, p1 P OpPq, s1 P Fpp1q, s2 P Fpp2q such that x1 “ φp1
ps1q, x2 “ φp2

ps2q, then

γp1
pτp1

ps1qq “ γp2
pτp2

ps2qq so, again by Lemma A.4.2, there is p P OpPq such that p1 ď p,

p2 ď p and Gp1
p pτp1

ps1qq “ Gp1
p pτp2

ps2qq, whence τp
`

Fp1
p ps1q

˘

“ τp
`

Fp2
p ps2q

˘

; since τp is

injective, Fp1
p ps1q “ Fp2

p ps2q, whence x1 “ x2. z

Proposition A.4.7. Let P be a directed preorder, τ an algebraic type, E,F,G functors

from P to Algτ with direct limits pe, εq, pf , φq, pg, γq; α, β natural transformations from

F to G, δ a natural transformation from E to F such that, for each p P OpPq, δp is an

inverse equalizer for αp and βp. Let δ˚ “ lim
ÝÑ

rδ, pe, εq, pf, φqs, α˚ “ lim
ÝÑ

rα, pf, φq, pg, γqs,

β˚ “ lim
ÝÑ

rβ, pf, φq, pg, γqs. Then Imgpδ˚q “ spα˚, β˚q. In particular, δ˚ is an inverse

equalizer for α˚, β˚.

Proof. Let t P δ˚peq. Then t “ δ˚ pεppsqq for some p P OpPq and some s P Eppq, that is

t “ φp pδppsqq, so

α˚ptq “ α˚pφppδppsqqq “ γppαppδppsqqq “ γppβppδppsqqq “ β˚pφppδppsqqq “ β˚ptq
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that is, t P s.

Let t P s. Then t “ φppsq for some p P OpPq and some s P Fppq, and α˚pφppsqq “

β˚pφppsqq, whence γppαppsqq “ γppβppsqq; thus there is q P OpPq such that p ď q and

Gp
qpαppsqq “ Gp

qpβppsqq, that is αqpF
p
qpsqq “ βqpF

p
qpsqq; by Proposition A.2.37 there is

u P Epqq such that Fp
qpsq “ δqpuq, thus t “ φppsq “ φqpF

p
qpsqq “ φqpδqpuqq “ δ˚pεqpuqq,

that is, t P δ˚peq. z

Proposition A.4.8. Let P be a directed preorder, C a concrete category, F and G functors

from P to C, τ a natural transformation from F to G such that, for each p P OpPq, τp is

surjective. Then any direct limit of τ is surjective.

Proof. Let τ̄ be the direct limit of τ relative to the direct limits pf , φq of F and pg, γq of G.

If y P g there are p P OpPq and s P Gppq such that y “ γppsq. Since τp is surjective, there

is t P Fppq such that s “ τpptq; if x “ φpptq, then τ̄pxq “ τ̄pφpptqq “ γppτpptqq “ γppsq “

y. z

Proposition A.4.9. Let P be a directed preorder, τ an algebraic type, E,F,G functors

from P to Algτ with direct limits pe, εq, pf , φq, pg, γq; α, β natural transformations from

E to F, δ a natural transformation from F to G such that, for each p P OpPq, δp is a

direct equalizer for αp and βp. Let δ˚ “ lim
ÝÑ

rδ, pe, εq, pf, φqs, α˚ “ lim
ÝÑ

rα, pf, φq, pg, γqs,

β˚ “ lim
ÝÑ

rβ, pf, φq, pg, γqs. Then Coipδ˚q “ g{rpα˚, β˚q. In particular, δ˚ is a direct

equalizer for α˚, β˚.

Proof. Let px, yq P eqpδ˚q. Since x “ φppsq and y “ φppfq for some p P OpPq and some

s P Gppq, t P Gppq, we have δ˚pφppsqq “ δ˚pφpptqq, whence γppδppsqq “ γppδpptqq; then there

is q P OpPq such that p ď q and GP
q pδppsqq “ GP

q pδpptqq, whence δqpF
p
qpsqq “ δqpF

p
qptqq,

that is,
`

Fp
qpsq,F

p
qptq

˘

P eqpδqq; by Proposition A.2.27 eqpδqq “ rpαq, βqq; now let l be a

congruence on g such that r0pα
˚, β˚q Ď l; then l “ eqphq, where

h : g Ñ g{l

x ÞÑ rxsl;

also, for each p P OpPq, h ˝ φp ˝ αp “ h ˝ α˚ ˝ εp “ h ˝ β˚ ˝ εp “ h ˝ φp ˝ βp, which yields

r0pαp, βpq Ď eqph ˝ φpq. In particular r0pαq, βqq Ď eqph ˝ φqq, so eventually

hpxq “ hpφppsqq “ hpφqpF
p

qpsqqq “ hpφqpF
p

qptqqq “ hpφpptqq “ hpyq

that is, px, yq P l and eqpδ˚q Ď l. Since l is any congruence on g such that r0pα
˚, β˚q Ď l,

we have rpα˚, β˚q Ď eqpδ˚q

Let px, yq P r0pα
˚, β˚q. Then x “ α˚pzq, y “ β˚pzq for a z P e, and z “ εppsq for some

p P OpPq and s P Eppq. Thus

δ˚pxq “ δ˚pα˚pzqq “ δ˚pα˚pεppsqqq “ δ˚pφppαppsqqq “ γppδppαppsqqq “

“ γppδppβppsqqq “ δ˚pφppβppsqqq “ δ˚pβ˚pεppsqqq “ δ˚pβ˚pzqq “ δ˚pyq
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that is, px, yq P eqpδ˚q and rpα˚, β˚q Ď eqpδ˚q. z

A.5 Adjunction

Definition A.5.1. Let F:CÑD and F:CÑD be functors. An adjunction from F to

G is a natural isomorphism φ : D ˝ pFˆ IDq Ñ C ˝ pICˆGq. That is

φ : OpCq ˆOpDq ÑMpSetq

pc,dq ÞÑ φc,d

where, for each pair pc,dq P OpCq ˆOpDq, φc,d is a bijection

φc,d : D pFpcq,dq Ñ C pc,Gpdqq

and for each f P C pc, c˚q and g P D pd,d˚q the diagram

D pFpc˚q,dq
φc˚,d //

DpFpfq,gq
��

C pc˚,Gpdqq

Cpf,Gpgqq
��

D pFpcq,d˚q
φc,d˚ // C pc,Gpd˚qq

commutes, or both the diagrams

D pFpc˚q,dq
φc˚,d //

DpFpfq,dq
��

C pc˚,Gpdqq

Cpf,Gpdqq
��

D pFpcq,dq
φc,d // C pc,Gpdqq

D pFpcq,dq
φc,d //

DpFpcq,gq
��

C pc,Gpdqq

Cpc,Gpgqq
��

D pFpcq,d˚q
φc,d˚ // C pc,Gpd˚qq

commute.

More in details, for each h P D pFpcq,dq and k P D pFpc˚q,dq

φc,d˚
pg ˝ hq “ Gpgq ˝ φc,dphq

φc,d pk ˝ Fpfqq “ φc˚,d
pkq ˝ f

and for each k P C pc,Gpdqq and l P C pc˚,Gpdqq

φ´1

c,d˚
pGpgq ˝ kq “ g ˝ φ´1

c,dpkq

φ´1

c,d pl ˝ fq “ φ´1

c˚,d
pkq ˝ Fpfq.
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Proposition A.5.1. Let F:CÑD and G:CÑD be functors, φ an adjunction from F to

G, c P OpCq. Set ηc “ φc,FpcqpidFpcqq. Then pFpcq, ηcq is a universal arrow from c to G, for

d P OpDq and f P D pFpcq,dq φc,dpfq “ Gpfq ˝ ηc, and the map

η : OpCq ÑMpCq

c ÞÑ ηc

is a natural transformation from IC to G ˝ F.

Conversely, if η is a natural transformation from IC to G ˝ F and for each c P OpCq
pFpcq, ηcq is a universal arrow from c to G, then there is an adjunction φ from F to G such

that

φc,d : D pFpcq,dq Ñ C pc,Gpdqq

f ÞÑ Gpfq ˝ ηc

for each pc,dq P OpCq ˆOpDq.

Proof. Suppose that φ is an adjunction from F to G. For c P OpCq set

φpcqd : D pFpcq,dq Ñ C pc,Gpdqq

h ÞÑ φc,dphq.

Then φpcqd : D pFpcq,´q Ñ C pc,G´q is a natural isomorphism, so by PropositionA.2.11
`

Fpcq, φpcqFpcqpidFpcqq
˘

is a universal arrow from c to G.

For any c1 P OpCq, c2 P OpCq and f : c1 Ñ c2 the diagram

ICpc1q
ηc1 //

ICpfq

��

G ˝ Fpc1q

G˝Fpfq

��
ICpc2q

ηc2 // G ˝ Fpc2q

commutes because

ηc2
˝ ICpfq “ ηc2

˝ f “ φpc2q

Fpc2q
pidFpc2q

q ˝ f “ φpc1q

Fpc2q
pidFpc2q

˝Fpfqq “

“ φpc1q

Fpc2q
pFpfq ˝ idFpc1q

q “ G pFpfqq ˝ φpc1q

Fpc1q
pidFpc1q

q “

“ pG ˝ Fqpfq ˝ ηc1
.

If for each c P OpCq pFpcq, ηcq is a universal arrow from c to G, then by Proposition A.2.9

φpcqd : D pFpcq,dq Ñ C pc,Gpdqq

f ÞÑ Gpfq ˝ ηc
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define a natural isomorphism φpcq : D pFpcq,´q Ñ C pc,G´q. If the map η is a natural

transformation η : IC Ñ G ˝ F, then if f : c Ñ c˚ the diagram

D pFpc˚q,dq
φ
pc˚q
d //

DpFpfq,dq
��

C pc˚,Gpdqq

Cpf,Gpdqq
��

D pFpcq,dq
φ
pcq
d // C pc,Gpdqq

commutes because, for h : Fpcq Ñ d

φpcqd

`

D pFpfq,dq phq
˘

“ G ph ˝ Fpfqq ˝ ηc “ Gphq ˝GpFpfqq ˝ ηc “

“ Gphq ˝ pG ˝ Fq pfq ˝ ηc “ Gphq ˝ ηc˚
˝ f “

“ C pf,Gpdqq pφpc˚qd phqq .

So

φ : OpCq ˆOpDq ÑMpSetq

pc,dq ÞÑ φc,d

is an adjunction from F to G. z

Definition A.5.2. Let φ be an adjunction from F to G. The natural transformation

η : Idom F Ñ GF defined for c P Opdom Fq by ηc “ φc,FpcqpidFpcqq is called the unit of φ.

Proposition A.5.2. Let F:CÑD and G:DÑC be functors, φ an adjunction from F to

G, d P OpDq. Set εd “ φ´1
Gpdq,dpidGpDqq. Then pGpdq, εdq is a universal arrow from F to d,

for c P OpCq and g P C pd,Gpcqq φ´1
c,dpfq “ εd ˝ Fpgq, and the map

ε : OpDq ÑMpDq

d ÞÑ εd

is a natural transformation from F ˝G to ID.

Conversely, if ε is a natural transformation from F ˝ G to ID and for each d P OpDq
pGpdq, εdq is a universal arrow from F to d, then there is an adjunction φ from F to G

such that

φ´1

c,d : C pc,Gpdqq Ñ D pFpcq,dq

g ÞÑ εd ˝ Fpgq

for each pc,dq P OpCq ˆOpDq.

Proof. Analogous to the proof of Proposition A.5.1. z

Definition A.5.3. Let φ be an adjunction from F to G. The natural transformation

ε : FG Ñ Idom G defined for d P Opdom Gq by εd “ φ´1
Gpdq,dpidGpdqq is called the counit of φ.
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Proposition A.5.3. Let F:CÑD, G:DÑC be functors and φ be an adjunction from F

to G, η and ε its unit and counit. Then for every c P OpCq and d P OpDq

GpεdqηGpdq “ idGpdq (A.120)

εFpcqFpηcq “ idFpcq . (A.121)

Proof. By the definitions of unit and counit of an adjunction and Propositions A.5.1 and

A.5.2

idGpdq “ φGpdq,dpεdq “ GpεdqηGpdq (A.122)

and

idFpcq “ φ´1

c,Fpcqpηcq “ εFpcqFpηcq. (A.123)

z

Proposition A.5.4. Let G:DÑC be a functor, and for each c P OpCq let pFc, ηcq be a

universal arrow from c to G. Then there is a functor F:CÑD such that for c P OpCq
Fpcq “ Fc, and the ηc are the components of a natural transformation η : IC Ñ GF. Thus

F is a left adjoint to G.

Proof. If f : c1 Ñ c2 define Fpfq as the unique map such that ηc2
f “ GFpfqηc1

. It’s

easy to check that this defines a functor F:CÑD. This definition also makes ηc into the

components of a natural transformation η : IC Ñ GF. z

Proposition A.5.5. Let F:CÑD be a functor, and for each d P OpDq let pGd, εdq be a

universal arrow from F to d. Then there is a functor G:DÑC such that for d P OpDq
Gpdq “ GD, and the εd are the components of a natural transformation ε : FG Ñ ID. Thus

G is a right adjoint to F.

Proof. If f : d1 Ñ d2 define Gpfq as the unique map such that εd2
FGpfq “ fεd1

. It’s

easy to check that this defines a functor G:DÑC. This definition also makes εd into the

components of a natural transformation ε : FG Ñ ID. z

Proposition A.5.6. Let F:CÑD, G:CÑD, H:DÑE, K:BÑC be functors and τ : F Ñ

G. Then there are natural transformation Hτ : HF Ñ HG and τK : FK Ñ GK defined for

c P OpCq and b P OpBq by

Hτc “ Hpτcq (A.124)

end

τFb “ τKpbq. (A.125)
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Proof. Routine check. z

Proposition A.5.7. Let F:CÑD, G:DÑC be functors and η : IC Ñ GF, ε : FG Ñ ID

natural transformation such that

Gε ˝ ηG “ idG (A.126)

εF ˝ Fη “ idF . (A.127)

Then there is an adjunction from F to G of which η is the unit and ε is the counit.

Proof. Let c P OpCq, we prove that pFpcq, ηcq is a universal arrow from c to G.

Let f : c Ñ Gpdq, and set h “ εd ˝ Fpfq. We prove that Gphq ˝ ηc “ f . Since η : IC Ñ GF

is a natural transformation

Gεd ˝GFpfq ˝ ηc “ Gεd ˝ ηGd ˝ f “ idGpdq ˝f “ f. (A.128)

If g : Fpcq Ñ d is such that Gpgq ˝ ηc “ f then

h “ εd ˝ Fpfq “ εd ˝ FGpgq ˝ Fpηcq “ g ˝ εFc ˝ Fηc “ g ˝ idFpcq “ g. (A.129)

z

Proposition A.5.8. A right adjoint functor preserves inverse limits.

Proof. Let F:CÑD, g :DÑC, and ϕ an adjunction from F to G. Let H:JÑD and

pl, λq be an inverse limit for H. Then pGplq,Gλq is an inverse target for GH. Let pt, τq

be another inverse target for GH. Then for j P OpJq τj : t Ñ GHpjq. For j P OpJq set

µj “ ϕ´1
c,Hpjqpτjq : Fptq Ñ Hpjq. If f P Jpi, jq the diagram

DpFptq,Hpiqq
ϕt,Hpiq //

DpFptq,Hpfqq
��

Cpt,GHpiqq

Cpt,GHpfqq
��

DpFptq,Hpjqq
ϕt,Hpjq // Cpt,GHpjqq

(A.130)

commutes, thus

Hpfq ˝ µi “ Hpfq ˝ ϕ´1

t,Hpiqpτiq “ ϕ´1

t,HpjqpGHpfq ˝ τiq “ ϕ´1

t,Hpjqpτjq “ µj (A.131)

and so the τi are the components of a natural transformation τ : CJ,D

Fptq Ñ H, that is, pFptq, µq

is an inverse target for H. Thus there exists a unique h : Fptq Ñ l such that µ “ λ ˝ γ J,D

h .

Since for j P OpJq the diagram

DpFptq, lq
ϕt,l //

DpFptq,λiq
��

Cpt,Gplqq

Cpt,Gpλjqq
��

DpFptq,Hpjqq
ϕt,Hpjq // Cpt,GHpjqq

(A.132)
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commutes, we have

Gλj ˝ ϕt,lphq “ ϕt,Hpjqpλi ˝ hq “ ϕt,Hpjqpµjq “ τj. (A.133)

and thus

Gλ ˝ γ J,D

ϕt,lphq
“ τ. (A.134)

If also k : t Ñ Gplq is such that

Gλ ˝ γ J,D

k “ τ (A.135)

then again because the diagram A.132 commutes we have for j P OpJq

λjϕ
´1

t,l pkq “ ϕ´1

t,HpjqpGpλjq ˝ kq “ ϕ´1

t,Hpjqpτjq “ µj (A.136)

whence ϕ´1
t,l pkq “ h and k “ ϕt,lphq. z

Corollary A.5.1. A right adjoint functor preserves monomorphism.

Proof. Let G:CÑD be a right adjoint and let f P Cpc1, c2q be a monomorphism. Then

c1

idc1 //

idc1

��

c1

f

��
c1

f // c2

(A.137)

is a pull-back, and by Proposition A.5.8 so is

Fpc1q
Fpidc1 q//

Fpidc1 q

��

Fpc1q

Fpfq

��
Fpc1q

Fpfq // c2

(A.138)

so Fpfq is a monomorphism. z

Proposition A.5.9. A left adjoint functor preserves direct limits.

Proof. Analogous to proof of Proposition A.5.8 z

Corollary A.5.2. A left adjoint functor preserves epimorphism.

Proof. Analogous to proof of Corollary A.5.1 z

Definition A.5.4. Let C be a category, S Ď OpCq. The immersion functor of S in

C is the functor IS :S˚ÑC defined on objects by

IS
pcq “ c (A.139)

and on morphisms by

IS
pidcq “ idc . (A.140)
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Definition A.5.5. We say that a category C satisfies the Solution Set Condition

if there is a small subset S of OpCq such that for every object c of C there is an object

c
1

P S and a morphism f : c
1

Ñ c. The set S is called the solution set of C.

Theorem A.5.1. Let C be a small-inverse-complete category with small hom-sets. Then

C has an initial object if and only if it satisfies the Solution Set Condition.

Proof. Suppose C has an initial object i. Then tiu is a solution set of C. Suppose S is an

initial set of C. Let IS be the immersion functor of S in C. Since C is small complete the

inverse product pp, πq of IS exists. Since the set Cpp,pq is small and C is small-complete

an equaliser e : i Ñ p of it exists. For c P OpCq there is an object c˚ P S and a morphism

f : c˚ Ñ c, and thus also a morphism f ˝πc˚ ˝e : i Ñ c. Suppose there are two morphisms

g1, g2 : i Ñ c, then there exists an equaliser of them h : u Ñ i. By construction of p there

is a morphism s : p Ñ u, thus e ˝ h ˝ s P Cpp,pq, and since e is an equaliser of Cpp,pq we

have e˝h˝s˝e “ idp ˝e “ e˝ idi whence, since e is a monomorphism, h˝s˝e “ idi. Thus h

has a right inverse whence, since it is a monomorphism, it is an isomorphism, which yields

g1 “ g2. z

Definition A.5.6. Let F:CÑD be a functor, d P OpDq. We call projection functor

F-under d the functor Qd,F defined on object by Qd,Fppc, uqq “ c and on morphisms by

Qd,Fpfq “ f . We call projection functor F-over d the functor QF,d defined on object

by QF,dppu, cqq “ c and on morphisms by Qd,Fpfq “ f

Theorem A.5.2. If the functor F:CÑD preserves small inverse limits then for every

d P OpDq the projection functor F-under d creates all small inverse limits.

Proof. Let J be a small category, H:JÑC and pl, λq an inverse limit of Qd,FH. Then

pFplq,Fλq is an inverse limit of FQd,FH. For j P OpJq set Hpjq “ pcj, µjq, and the µj are the

components of a natural transformation µ : CC,D
d Ñ F. Thus pd, µq is an inverse target for

F, and there is a unique morphism f : d Ñ Fplq such that

µ “ Fλ ˝ γ C,D

f . (A.141)

Since Fλj : Fplq Ñ FQd,FHpjq and FQd,FHpjq “ Fpcjq, then from Eq. A.141 follows that

Fλj P pdÓF qppl, fq,Hpjqq, and ppl, fq,Fλq is an inverse target of H.

If ppm, gq, τq is another inverse target of H, then pm, τq is an inverse target of Qd,FH, thus

there is a unique morphism h : m Ñ l such that

τ “ λ ˝ γ J,C

h . (A.142)

Let’s show that h P pdÓF qppm, gq, pl, fqq. From Eq. A.142 follows Fτ “ Fλ ˝ γ J,C

Fphq and

Fλ ˝ γ J,C

Fphq˝g “ Fλ ˝ γ J,C

Fphq ˝ γ
J,C

g “ Fτ ˝ γ J,C

g “ µ (A.143)
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and the uniqueness of f in Eq. A.141 yields Fphq ˝ g “ f .

Suppose there is also k : pm, gq Ñ pl, fq such that τ “ λ ˝ γ J,C

k , then k P Cpm, lq and the

uniqueness of h in Eq. A.142 yields k “ h.

Thus ppl, fq,Fλq is a limit of H. z

Theorem A.5.3 (Freyd Adjoint Functor Theorem). Let D be a small-inverse-complete

category with small hom-sets. A functor F:DÑC has a left adjoint if and only if it preserve

all small inverse limits and for every object c P O c the category pcÓGq satisfies a Solution

Set Condition.

Proof. If G has a left adjoint then it preserves all limits, in particular all small ones. If F

is the left adjoint of G and η is the unit of the adjunction then tpFpcq, ηcqu is a solution

set for pc Ó Gq. Indeed, if ε is the counit of the adjunction then for pd, uq P Oppc Ó Gqq
εd ˝Fpuq P DpFpcq,dq and Gpεd ˝Fpuqq ˝ ηc “ u, thus εd ˝Fpuq P pcÓGqppFpcq, ηcq, pd, uqq.

If G preserves all small inverse limits then by Theorem A.5.2 for every c P OpCq the

category pcÓGq is small-inverse-complete.

Since D has small hom-sets for every c P OpCq the category pcÓGq also has small hom-sets.

If for every object c P Opcq the category pc ÓGq satisfies a Solution Set Condition, then,

since it is small-inverse-complete and has small hom-sets, by Theorem A.5.1 it has an initial

object, thus by Proposition A.2.5 there is a universal arrow from c to G. By Proposition

A.5.4 G has a left adjoint. z

Proposition A.5.10. Every functor from J to C has a direct limit if and only if ∆J
C has

a left adjoint.

Proof. Suppose ∆J
C has a left adjoint L and let φ be the adjunction’s natural isomorphism.

Then by Proposition A.2.16 for FPOpCJq pLpFq, φLpFq,LpFqpidLpFqqq is a direct limit for F.

If every F POpCJq has a limit plF, λFq, then this is a universal arrow from F to ∆J
C, thus

by Proposition A.5.4 ∆J
C has a left adjoint. z

A.6 Biproducts

Proposition A.6.1. Let A be an ab-category. If pc, piq is an inverse product of the objects

ta1 . . . aiu then pc, iiq is a direct product of ta1 . . . aiu, where the morphisms ii are defined

by

piij “

#

idai
, if i “ j

0
aj
ai , if i ‰ j.

(A.144)
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If pd, iiq is a direct product of the objects ta1 . . . aiu then pd, piq is an inverse product of

ta1 . . . aiu, where the morphisms pi are defined by

piij “

#

idai
, if i “ j

0
aj
ai , if i ‰ j.

(A.145)

Proof. Suppose pc, piq is an inverse product of the objects ta1 . . . aiu and let ii for i “ 1 ¨ ¨ ¨n

be defined by Equation (A.144). We have i1p1 ` ¨ ¨ ¨ ` inpn “ idc, indeed

pjpi1p1 ` ¨ ¨ ¨ ` inpnq “ pj. (A.146)

Let e P OpAq and fi : ai Ñ e for i “ 1 ¨ ¨ ¨n. Let

h “ fipi ` . . .` fnpn. (A.147)

Then hii “ fi for i “ 1 ¨ ¨ ¨n. If k : c Ñ e such that kii “ fi for i “ 1 ¨ ¨ ¨n, then

ki1p1 ` ¨ ¨ ¨ ` kinpn “ fp1 ` ¨ ¨ ¨ ` fpn (A.148)

but

ki1p1 ` ¨ ¨ ¨ ` kinpn “ kpi1p1 ` ¨ ¨ ¨ ` inpnq “ k idc “ k (A.149)

thus k “ h.

The proof of the second part is analogous. z

Definition A.6.1. Let A be a category with zero morphisms, a1, . . . , an objects of A. An

object c is a biproduct of a1, . . . , an if there are morphisms pi : c Ñ ai and ii : ai Ñ c

for i “ 1, . . . , n such that

piij “

#

idai
, if i “ j

0
aj
ai , if i ‰ j

(A.150)

and

• c is an inverse product of a1, . . . , an with projecions pi

• c is a direct product of a1, . . . , an with injecions ii.

The morphisms pi are called the projections of c, the morphisms ii are called the injec-

tions of c.

Proposition A.6.2. Let A be an ab-category, a1, . . . , an P OpAq, c P OpAq for which

there are morphisms pi : c Ñ ai and ii : ai Ñ c for i “ 1, . . . , n such that

piij “

#

idai
, if i “ j

0
aj
ai , if i ‰ j

(A.151)

and

i1p1 ` ¨ ¨ ¨ ` inpn “ idc . (A.152)

Then c is a biproduct of a1, . . . , an P OpAq with projections pi and injections ii.
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Proof. By Proposition A.6.1 it is sufficient to prove that c is an inverse product of a1, . . . , an

with projecions pi.

Let d P OpAq and q1 : d Ñ a1 for i “ 1, . . . , n. Define h : d Ñ c by

h “
n
ÿ

i“1

iiqi. (A.153)

Then

pjh “ pj

n
ÿ

i“1

iiqi “
n
ÿ

i“1

pjiiqi “ pjijqj “ idaj
qj “ qj. (A.154)

If also k : d Ñ c is such that pik “ qi for i “ 1, . . . , n. Then

k “ idc k “
n
ÿ

i“1

iipik “
n
ÿ

i“1

iipih “ idc h “ h. (A.155)

z

Proposition A.6.3. Let A be an ab-category, a1, . . . , an objects of A, c a biproduct of

a1, . . . , an with projections pi and injections ii. Then c is an inverse product of a1, . . . , an

with projections pi and a direct product of a1, . . . , an with injections ii.

Proof. Routine check. z

Notation A.6.1. We will write

n
ä

i

ai (A.156)

or

a1 d ¨ ¨ ¨ d an (A.157)

or, when there is no risk of ambiguity

ä

ai,d ai, (A.158)

for the isomorphism class of the biproducts of a1, . . . , an, and also for a specific member of

it when this will not generate any ambiguity. We will write

p‚, i‚ (A.159)

respectively for the projections and injections of the biproduct indicated by ‚.

Proposition A.6.4. Let A be a category with zero morphisms, a1, . . . , an, b1, . . . ,bn ob-

jects of A, fi : ai Ñ bi for i “ 1, . . . , n, and suppose that dai and dbi exist. Then there

is a unique map dfi : d ai Ñ dbi satisfying for j “ 1, . . . , n

p
dbi
j d fi “ fjp

dai
j

dfii
dai
j “ i

dbi
j fj.

(A.160)
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If A is an ab-category then

dfi “
n
ÿ

j“1

idbi
j fjp

dai
j . (A.161)

Proof. That the (A.160) define a unique map dfi : d ai Ñ dbi is a consequence of being

dai an inverse product with projections pdai , and dbi a direct product with injections idbi .

From the first of (A.160) we get

n
ÿ

j“1

i dbi
j p dbi

j d fi “
n
ÿ

j“1

i dbi
j fjp

dai
j (A.162)

but
n
ÿ

j“1

i dbi
j p dbi

j d fi “ id dbi
dfi “ dfi. (A.163)

z

Definition A.6.2. For a category with zero morphisms C and c P OpCq the maps

δc : c Ñ c
ś

c (A.164)

δc : c
š

c Ñ c (A.165)

defined respectively by

pc
ś

c

1 δc “ pc
ś

c

2 δc“ idc (A.166)

δcic
š

c

1 “ δcic
š

c

2 “ idc (A.167)

are called respectively the diagonal map to c
ś

c and the diagonal map from c
š

c.

Lemma A.6.1. In an ab-category the biproduct is bilinear with respect to composition.

That is, if f1 : a1 Ñ b1, g1 : b1 Ñ c1, f2 : a2 Ñ b2, g2 : b2 Ñ c2, and a1 d a2, b1 d b2,

c1 d c2 exist, then pg1 d g2q ˝ pf1 d f2q “ pg1 ˝ f1q d pg2 ˝ f2q.

Proof. We have

pg1 d g2q ˝ pf1 d f2q “ pi
c1dc2
1 ˝ g1 ˝ p

b1db2
1 ` ic1dc2

2 ˝ g2 ˝ p
b1db2
2 q˝

˝ pib1db2
1 ˝ f1 ˝ p

a1da2
1 ` ib1db2

2 ˝ f2 ˝ p
a1da2
2 q “

“ pic1dc2
1 ˝ g1 ˝ p

b1db2
1 ˝ ib1db2

1 ˝ f1 ˝ p
a1da2
1 q`

` pic1dc2
2 ˝ g2 ˝ p

b1db2
2 ˝ ib1db2

1 ˝ f1 ˝ p
a1da2
1 q`

` pic1dc2
1 ˝ g1 ˝ p

b1db2
1 ˝ ib1db2

2 ˝ f2 ˝ p
a1da2
2 q`

` pic1dc2
2 ˝ g2 ˝ p

b1db2
2 ˝ ib1db2

2 ˝ f2 ˝ p
a1da2
2 q “

“ pic1dc2
1 ˝ g1 ˝ f1 ˝ p

a1da2
1 q ` pic1dc2

2 ˝ g2 ˝ f2 ˝ p
a1da2
2 q “

“ pg1 ˝ f1q d pg2 ˝ f2q.

z
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Remark A.6.1. The result of Lemma A.6.1 can of course be extended to any number of

operands, that is

n
ä

i“1

pf 1

i ˝ ¨ ¨ ¨ ˝ f
m

i q “

n
ä

i“1

f 1

i ˝ ¨ ¨ ¨ ˝

n
ä

i“1

fmi (A.168)

Lemma A.6.2. For f1 : a Ñ b, f1 : a Ñ b in an ab-category

f1 ` f2 “ δbpf1 d f2qδa. (A.169)

Proof.

δbpf1 d f2qδa “ δbpibdb

1 f1p
ada

1 ` ibdb

2 f2p
ada

2 qδa “

“ δbpibdb

1 f1 ida`i
bdb

2 f2 idaq “

“ idb f1 ` idb f2 “

“ f1 ` f2.

z

Definition A.6.3. A functor F:AÑB betewen ab-categories is additive if for any two

morphisms f1 : a Ñ b, f2 : a Ñ b

Fpf1 ` f2q “ Fpf1q ` Fpf2q. (A.170)

!!! Maybe add here def of ”preserve biproducts”? !!!

Proposition A.6.5. If A and B are ab-categories and A has binary biproducts then a

functor F:AÑB is additive f and only if it preserves biproducts.

Proof. If F is additive then it is easy to check that for a1 P OpAq, a2 P OpAq, Fpa1 d a2q

is a biproduct of Fpa1q and Fpa2q with projections Fppa1da2q and injections Fpia1da2q.

Suppose F preserves biproducts and let f1 : a Ñ b, f1 : a Ñ b. Since F preserves biprod-

ucts Fpδaq “ δFpaq and Fpδbq “ δFpbq, thus

Fpf1 ` f2q “ Fpδbpf1 d f2qδaq “ δFpbq
pFpf1q d Fpf2qq δFpaq “ Fpf1q ` Fpf2q. (A.171)

z

Proposition A.6.6. Let C be a category, A an ab-category with all biproducts. Then for

n P N there is a functor
Ä

n :CnÑA such that for ai P OpAq, fi PMpAq, i “ 1, . . . , n

•
Ä

n
pa1, . . . , anq “

Ä

n

i“1
ai

•
Ä

n
pf1, . . . , fnq “

Ä

n

i“1
fi.



56 A. Some facts on categories and limits

Proof. Let ai P OpAq, i “ 1, . . . , n. Then

n
ä

pida1
, . . . , idanq “

n
ÿ

j“1

idaij idaj
pdai
j “

“

n
ÿ

j“1

idaij pdai
j “

“ iddai
.

Let pf1, f2q : pa1, a2q Ñ pb1,b2q, pg1, g2q : pb1,b2q Ñ pc1, c2q. Then by Lemma A.6.1 and

Remark A.6.1

n
ä

pg1 ˝ f1, . . . , gn ˝ fnq “
n
ä

i“1

pgi ˝ fiq “
n
ä

i“1

pgiq ˝
n
ä

i“1

pfiq “ (A.172)

“

n
ä

pg1, . . . , gnq ˝
n
ä

pf1, . . . , fnq. (A.173)

z

Proposition A.6.7. Let D be a category with n-order biproducts. Then for every category

C the category DC also has n-order biproducts.

Proof. Let F1, . . . ,Fn P OpDCq. Let’s show that there is a functor dF1 P OpDCq defined

by:

• pdFiqpcq “ dFipcq for c P OpCq

• pdFiqpfq “ dFipfq for f PMpCq.

For c P OpCq

pdFiqpidCq “ dFipidcq “ d idFpcq “ iddFpcq . (A.174)

For composable morphisms f, g PMpCq by Lemma A.6.1

pdFiqpg ˝ fq “ dFipg ˝ fq “ dpFipgq ˝ Fipfqq “ dFipgq ˝ dFipfq. (A.175)

Let’s show that dFi is a biproduct of F1, . . . ,Fn. It will suffice to show that it is an inverse

product of F1, . . . ,Fn. Let’s show that there are natural transformation p
dFi
j : d Fi Ñ Fj

for j “ 1, . . . , n defined for c P OpCq by

ppdFi
j qc “ pdFipcq

j . (A.176)

Let c,d P OpCq, f P Cpc,dq. The diagram

pdFiqpcq
pp
dFi
j qc

//

pdFiqpfq

��

Fjpcq

Fjpfq

��
pdFiqpdq

pp
dFi
j qd // Fjpdq

(A.177)
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commutes because

Fjpfq ˝ pp
dFi
j qc “ Fjpfq ˝ p

dFipcq

j

ppdFi
j qd ˝ pdFiqpfq “ pdFipdq

j ˝ dFipfq

and

Fjpfq ˝ p
dFipcq

j “ pdFipdq

j ˝ dFipfq (A.178)

by the definition of dFipfq. z

Lemma A.6.3. Let A be an ab-category with finite biproducts, Fi P OpACq for i “ 1, . . . , n

and suppose that pci, πiq is an inverse limit for Fi for i “ 1, . . . , n. Then pdci,dπiq is an

inverse limit for dFi.

Proof. Note that dCC,A
ci
“ CC,A

dci
, therefore the biproduct dπi is a natural transformation

dπi : CC,A

dci
Ñ dFi (A.179)

so pdci,dπiq is an inverse target for dFi. If pd, hq is an inverse target for dFi, for

i “ 1, . . . , n set

hi “ pdFi

i ˝ h; (A.180)

these are natural transformations hi : CC,A
d Ñ Fi that factor uniquely as:

hi “ πi ˝ ki (A.181)

where ki for i “ 1, . . . , n are natural transformations

ki : CC,A

d Ñ CC,A

ci
. (A.182)

Set

h˚ “
ÿ

i
C
C,D
dci

i ˝ ki.

Then dπi ˝ h˚ “ h, indeed

dπi ˝ h˚ “ dπi ˝
ÿ

i
C
C,D
dci

j ˝ kj “
ÿ

dπi ˝ i
C
C,D
dci

j ˝ kj “
ÿ

idFi
j ˝ πj ˝ kj “

“
ÿ

idFi
j ˝ hj “

ÿ

idFi
j ˝ pdFi

j h “ iddFi
h “ h.

If l : CC,A
d Ñ CC,A

dFi
is such that dπi ˝ l “ h, then

h “
ÿ

i

pi
dFj
i ˝ πi ˝ p

C
C,A
dcj

i q ˝ l
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thus

hi “ p
dFj
i h “ πi ˝ p

C
C,A
dcj

i ˝ l (A.183)

which yields

p
C
C,A
dcj

i ˝ l “ ki (A.184)

because the factorization of hi through πi is unique, and

l “
ÿ

i

i
C
C,A
dcj

i ˝ p
C
C,A
dcj

i ˝ l “
ÿ

i

i
C
C,A
dcj

i ˝ ki “ h˚.

z

Lemma A.6.4. Let A be an ab-category with finite biproducts, Fi P OpACq for i “ 1, . . . , n

and suppose that pcı, πiq is a direct limit for Fi for i “ 1, . . . , n. Then pdci,dπiq is a direct

limit for dFi.

Proof. Analogous as proof to Lemma A.6.3. z

Lemma A.6.5. Do we really need this? If F and G are functors such that lim
ÐÝ

F and lim
ÐÝ

G

exist, pa, fq and pb, gq inverse targets for F and G that factor through f˚ and g˚, then fdg

factors through f˚ d g˚.

Proof. We have

f d g “ pp lim
ÐÝ

F
˝ f˚q d pp lim

ÐÝ
G
˝ f˚q “ pp lim

ÐÝ
F
d p lim

ÐÝ
G
q ˝ pf˚ d g˚q.

z

Lemma A.6.6. Do we really need this? If F and G are functors such that lim
ÝÑ

F and lim
ÝÑ

G

exist, pa, fq and pb, gq direct targets for F and G that factor through f˚ and g˚, then f d g

factors through f˚ d g˚.

Proof. We have

f d g “ pf˚ ˝ i lim
ÝÑ

F
q d pg˚ ˝ i lim

ÝÑ
G
q “ pf˚ d g˚q ˝ pi lim

ÝÑ
F
d i lim
ÝÑ

G
q.

z

Lemma A.6.7. Let C be a category, A an ab-category with finite biproducts, for i “

1, . . . , n let Fi,Gi P OpACq, pci, πiq and pdi, τiq inverse limits for Fi and Gi, fi : Fi Ñ Gi,

hi : CC,A
ci
Ñ CC,A

di
an inverse limit of fi. Then dhi is an inverse limit of dfi.
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Proof. We have

dfi ˝ dπi “ dpfi ˝ πiq “ dpτi ˝ hiq “ dτi ˝ dhi. (A.185)

z

Lemma A.6.8. Let C be a category, A an ab-category with finite biproducts, for i “

1, . . . , n let Fi,Gi P OpACq, pci, πiq and pdi, τiq direct limits for Fi and Gi, fi : Fi Ñ Gi,

hi : CC,A
ci
Ñ CC,A

di
a direct limit of fi. Then dhi is a direct limit of dfi.

Proof. Analogous as proof of Lemma A.6.7. z

Lemma A.6.9. Let A be an ab-category. If for i “ 1, . . . , n fi is an inverse equalizer for

gi, hi, and dfi, dgi, dhi exist, then dfi is an inverse equalizer for dgi, dhi.

Proof. We have

dgi ˝ dfi “ dpgi ˝ fiq “ dphi ˝ fiq “ dhi ˝ dfi. (A.186)

For i “ 1, . . . , n let fi : ai Ñ bi, gi : bi Ñ ci, hi : bi Ñ ci. If f : a Ñ dbi is such that

pdgiq ˝ f “ pdhiq ˝ f , then

ÿ

i

i
dcj
i gip

dbj
i f “

ÿ

i

i
dcj
i hip

dbj
i f (A.187)

whence, composing on the left by p
dcj
h

ghp
dbj
h f “ hhp

dbj
h f. (A.188)

For h “ 1, . . . , n there are unique morphisms f˚h such that p
dbi
h f “ fhf

˚

h . Set f˚ “
ř

i
daj
i f˚i ;

then

dfi ˝ f
˚
“
ÿ

i
dbj
i fip

daj
i ˝

ÿ

i
daj
i f˚i “

ÿ

i
dbj
i fif

˚

i “
ÿ

i
dbj
i p

dbj
i f “ f. (A.189)

If dfi ˝ f
˚˚ “ f , then

ÿ

i

i
dbj
i fip

daj
i f˚˚ “ f (A.190)

thus

p
daj
h f “ fhp

daj
h f˚˚ “ fhf

˚

h (A.191)

and, since the factorisations of the p
daj
h f are unique

p
daj
h f˚˚ “ f˚h (A.192)

whence

f˚˚ “
ÿ

h

i
daj
h p

daj
h f˚˚ “

ÿ

i
daj
i f˚h “ f˚. (A.193)

z
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A.7 Abelian categories

Definition A.7.1. A preadditive category is a category in which every hom-set is an

abelian group.

Definition A.7.2. An additive category is a preadditive category which has a null

object.

Definition A.7.3. An abelian category is an additive category A in which the following

conditions are satisfied

1. A has binary biproducts.

2. Every morphism of A has a kernel and a cokernel.

3. Every monomorphism of A is a kernel and every epimorphism of A is a cokernel.

Proposition A.7.1. Let C be a category. If f P Cpa,bq, kerpfq and cokpkerpfqq exist,

then kerpfq is a kernel of cokpkerpfqq. That is, if a morphism is a kernel and has a

cokernel, then it is a kernel of any of its cokernels.

Proof. Let f : a Ñ b, h : d Ñ a a kernel of f , k : a Ñ e a cokernel of h. Since f ˝ h “ 0d
b,

f factors uniquely as f “ f˚ ˝ k; if g : c Ñ a is such that k ˝ g “ 0c
e, then f ˝ g “ 0c

b also

holds, so g factor uniquely as g “ h ˝ g˚. z

Proposition A.7.2. Let C be a category. If f P Cpa,bq, cokpfq and kerpcokpfqq exist,

then cokpfq is a cokernel of kerpcokpfqq. That is, if a morphism is a cokernel and has a

kernel, then it is a cokernel of any of its kernels.

Proof. Let f : a Ñ b, h : b Ñ d be a cokernel of f , k : e Ñ b a kernel of h. Since

h ˝ f “ 0a
d, f factors uniquely as f “ k ˝ f˚; if g : b Ñ c is such that g ˝ k “ 0e

c, then

g ˝ f “ 0a
c also holds, so g factor uniquely as g “ g˚ ˝ h. z

Proposition A.7.3. Let A be an abelian category, f PMpAq. If f is a monomorphism

then f “ kerpcokpfqq, if f is an epimorphism then f “ cokpkerpfqq.

Proof. Straightforward from Definition A.7.3 and Propositions A.7.1, A.7.2. z

Lemma A.7.1. Let C be a category with zero morphisms, f PMpCq. If f is a kernel of

a zero morphism then it is an isomorphism, if f is a cokernel of a zero morphism then it

is an isomorphism.

Proof. Suppose f : k Ñ a is a kernel of 0a
b. Since 0a

b ida “ 0a
b, then ida factors uniquely as

ida “ fg. Thus f “ fgf , and gf “ idk because f is a monomorphism. The proof of the

second part is analogous. z
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Proposition A.7.4. In a category with zero morphisms a morphism that is both a monomor-

phism and an epimorphism is an isomorphism.

Proof. If f : a Ñ b is a monomorphism, it is a kernel of a morphism g : b Ñ c, so

g ˝ f “ 0a
c, which implies g “ 0b

c if f is also an epimorphism. By Lemma A.7.1 f is an

isomorphism. z

Lemma A.7.2. An abelian category has binary inverse equalisers.

Proof. If f1, f2 : a Ñ b it is straightforward to prove that a kernel of f1 ´ f2 is an inverse

equaliser of f1, f2. z

Lemma A.7.3. An abelian category has pullbacks.

Proof. Straightforward from Proposition A.3.1 and Lemma A.7.2 and an abelian category

having binary biproducts. z

Proposition A.7.5. If A is an abelian category, so is AJ for any category J.

Proof. Let F,G P OpAJq and α, β P AJpF,Gq. Define the natural transformation α ` β

for each j P OpJq by

pα ` βqj “ αj ` βj.

It is clear that thus every hom-set AJpF,Gq is an additive group.

If 0 is a null object of A, the functor N : J Ñ A defined by

Npjq “ 0 j P OpJq

Npfq “ 00

0 f PMpJq

is a null object in AJ.

AJ has binary biproducts by A.6.7.

By Proposition A.2.35 every morphism in AJ has a kernel, and by Proposition A.2.24

every morphism in AJ has a cokernel.

If f PMpAJq is a monomorphism, by Theorem A.2.2 every component fj is a monomor-

phism, therefore it is a kernel, and by Proposition A.7.1 it is a kernel of the component cj of

a cokernel c of f. Then f is a kernel of c. If f PMpAJq is an epimorphism, by Theorem (to

do, analogous to Theorem A.2.2 for direct limits) every component fj is an epimorphism,

therefore it is a cokernel, and by Proposition A.7.2 it is a cokernel of the component kj of

a kernel k of f. Then f is a cokernel of k. z

Definition A.7.4. Let C be a category, f PMpCq. An image of f is a monomorphism

m such that
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• there is e PMpCq such that f “ m ˝ e

• if f “ m1˝e1 and m1 is a monomorphism then there is v PMpCq such that m “ m1˝v.

Proposition A.7.6. If C is a category, f PMpCq and m is an image of f , then there is

a unique e PMpCq such that f “ m ˝ e.

Proof. Straightforward from the fact that m is a monomorphism. z

Proposition A.7.7. Two morphisms are images of the same morphism f if and only if

they belong to the same subobject of codpfq.

Proof. Straightforward from definition. z

Notation A.7.1. For a morphism f we will denote by imgpfq the equivalence class of all

the images of f , which is a subobject of codpfq. Thus m P imgpfq will mean that m is an

image of f . We will also write imgpfq for any element of imgpfq, when there will be no

need to specify further.

Lemma A.7.4. If f is a monomorphism then f P imgpfq.

Proof. Let f : a Ñ b. We have f “ f ˝ ida, and if m is a monomorphism such that

f “ m˝e, then this is the unique factorisation of f through m. Since f is a monomorphism

f P imgpfq. z

Proposition A.7.8. If A is an abelian category, for any f PMpAq imgpfq “ kerpcokpfqq.

Proof. Being imgpfq and kerpcokpfqq equivalence classes, it is enough to prove that there

is a cokpkerpfqq in imgpfq.

Let f : a Ñ b. Then f factors as f “ kerpcokpfqq ˝ e because cokpfq ˝ f “ 0a
Cokpfq, and

kerpcokpfqq is a monomorphism. We need to prove that if f factors as f “ g ˝ h and g is a

monomorphism, then kerpcokpfqq factors through g. By Proposition A.7.3 g “ kerpcokpgqq,

so we will prove this by proving that cokpgq ˝ kerpcokpfqq “ 0Kerpcokpfqq

Cokpgq .

We have cokpgq ˝ f “ cokpgq ˝ g ˝ h “ 0a
Cokg

, thus cokpgq factors as cokpgq “ m ˝ cokpfq. It

follows that cokpgq˝kerpcokpfqq “ m˝cokpfq˝kerpcokpfqq “ 0Kerpcokpfqq

Cokpgq so indeed kerpcokpfqq

factors through kerpcokpgqq, that is, through g. This proves that kerpcokpfqq P imgpfq. z

Definition A.7.5. Let C be a category, f PMpCq. A coimage of f is an epimorphism

e such that

• there is m PMpCq such that f “ m ˝ e

• if f “ m1 ˝ e1 and e1 is an epimorphism then there is v PMpCq such that e “ v ˝ e1.
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Proposition A.7.9. If C is a category, f PMpCq and e is a coimage of f , then there is

a unique m PMpCq such that f “ m ˝ e.

Proof. Straightforward from the fact that m is an epimorphism. z

Proposition A.7.10. Two morphisms are coimages of the same morphism f if and only

if they belong to the same superobject of dompfq.

Proof. Straightforward from definition. z

Notation A.7.2. For a morphism f we will denote by coipfq the equivalence class of all

the coimages of f , and by coipfq any of its members, when that does not give rise to any

confusion.

Lemma A.7.5. If f is an epimorphism then f P coipfq.

Proof. Let f : a Ñ b. We have f “ idb ˝f , and if e is an epimorphism such that f “

m ˝ e, then this is the unique factorisation of f through e. Since f is an epimorphism

f P coipfq. z

Proposition A.7.11. If A is an abelian category, for any f PMpAq coipfq “ cokpkerpfqq.

Proof. Being coipfq and cokpkerpfqq equivalence classes, it is enough to prove that there is

a cokpkerpfqq in coipfq.

Let f : a Ñ b. Then f factors as f “ e ˝ cokpkerpfqq because f ˝ kerpfq “ 0Kerpfq

b , and

cokpkerpfqq is a monomorphism. We need to prove that if f factors as f “ g˝h and h is an

epimorphism, then cokpkerpfqq factors through h. By Proposition A.7.3 g “ cokpkerpgqq,

so we will prove this by proving that cokpkerpfqq ˝ kerphq “ 0Kerphq

Cokpkerpfqq.

We have f ˝ kerphq “ e ˝ h ˝ kerphq “ 0Kerphq

b , thus kerphq factors as kerphq “ kerpfq ˝m. It

follows that cokpkerpfqq ˝ kerphq “ cokpkerpfqq ˝ kerphq ˝ kerpgq ˝m “ 0Kerphq

Cokpkerpfqq so indeed

cokpkerpfqq factors through cokpkerphqq, that is, through h. This proves that cokpkerpfqq P

coipfq. z

Lemma A.7.6. Let A be an abelian category, f P Apa,bq, g P Apb, cq. Then imgpfq “

kerpgq if and only if cokpfq “ coipgq.

Proof. We have

imgpfq “ kerpgq ðñ kerpcokpgqq “ kerpgq

ðñ cokpkerpcokpfqqq “ cokpkerpgqq

ðñ cokpfq “ coipgq.

z



64 A. Some facts on categories and limits

Definition A.7.6. A diagram of morphisms

¨ ¨ ¨ a
f // b

g // b ¨ ¨ ¨

is exact at b if and only if imgpfq “ kerpgq or equivalently cokpfq “ coipgq.

Lemma A.7.7. In a category with zero morphisms for any two objects a and b cokp0a
bq “

ridbsb.

Proof. Straightforward from the definition of cokernel. z

Lemma A.7.8. In a category with zero morphisms for any two objects a and b imgp0a
bq “

r00
bsb.

Proof. Straightforward from the definition of image. z

Proposition A.7.12. In an abelian category the diagram of morphisms

0 // a
f // b (A.194)

is exact at a if and only if f is a monomorphism.

Proof. The diagram (A.194) is exact at a, by Lemma A.7.8, if and only if kerpfq “ r00
as,

so if and only if f is a monomorphism. z

Lemma A.7.9. In a category with zero morphisms for any two objects a and b kerp0a
bq “

ridas
a.

Proof. Straightforward from the definition of kernel. z

Lemma A.7.10. In a category with zero morphisms for any two objects a and b coip0a
bq “

r0a
0s

a.

Proof. Straightforward from the definition of image. z

Proposition A.7.13. In an abelian category the diagram of morphisms

a
f // b // 0 (A.195)

is exact at b if and only if f is an epimorphism.

Proof. The diagram (A.195) is exact at b, by Lemma A.7.10, if and only if cokpfq “ r0b
0s,

so if and only if f is am epimorphism. z

Definition A.7.7. In a category with a null object 0 a diagram of morphisms

0 // a
f // b

g // c // 0

is a short exact sequence of morphisms if it is exact at a, b, c.
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Proposition A.7.14. In an abelian category the diagram of morphisms

0 // a
f // b

g // c // 0 (A.196)

is a short exact sequence if and only if f P kerpgq and g P cokpfq.

Proof. By Proposition A.7.12 the diagram (A.196) is exact at a if and only if f is monic.

By Proposition A.7.13 the diagram (A.196) is exact at c if and only if g is epic. Thus

f P imgpfq and g P coipgq, and the diagram (A.196) is exact at b if and only if f P kerpgq

or g P cokpfq. z

Definition A.7.8. In a category with zero morphisms a diagram of morphisms

0 // a
f // b

g // c

is a short left exact sequence of morphisms if it is exact at a and b.

Proposition A.7.15. In an abelian category the diagram of morphisms

0 // a
f // b

g // c (A.197)

is a short left exact sequence if and only if f P kerpgq.

Proof. By Proposition A.7.12 the diagram (A.197) is exact at a if and only if f is monic,

that is if and olny if f P imgpfq , and so the diagram (A.197) is exact at b if and only if

f P kerpgq. z

Definition A.7.9. In a category with a null object 0 a diagram of morphisms

a
f // b

g // c // 0

is a short right exact sequence of morphisms if it is exact at b and c.

Proposition A.7.16. In an abelian category the diagram of morphisms

a
f // b

g // c // 0 (A.198)

is a short right exact sequence if and only if g P cokpfq.

Proof. By Proposition A.7.13 the diagram (A.198) is exact at c if and only if g is epic,

that is if and olny if g P coipgq , and the diagram (A.198) is exact at b if and only if

g P cokpgq. z

Definition A.7.10. A functor T : A Ñ B between abelian categories is

• left exact if it preserves finite inverse limits, that is, if for any finite category I, any

functor F : I Ñ A and any inverse limit pl, µq of F, pTplq,Tpµqq is an inverse limit of

TF.
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• right exact if it preserves finite direct limits, that is, if for any finite category I,

any functor F : I Ñ A and any direct limit pl, µq of F, pTplq,Tpµqq is a direct limit

of TF.

• exact if it is both left and right exact.

Remark A.7.1. A left exact functor T : A Ñ B between abelian categories preserves in

particular kernels, which can be stated in the form Tpkerpfqq “ kerpTpfqq, and thus it

preserves short left exact sequences, that is, if

0 // a
f // b

g // c

is exact, then

0 // Tpaq
Tpfq // Tpbq

Tpgq // Tpcq

is also exact.

A right exact functor T : A Ñ B between abelian categories preserves in particular coker-

nels, which can be stated in the form Tpcokpfqq “ cokpTpfqq, and thus it preserves short

right exact sequences, that is, if

a
f // b

g // c // 0

is exact, then

Tpaq
Tpfq // Tpbq

Tpgq // Tpcq // 0

is also exact.

Proposition A.7.17. A functor between abelian categories is left exact if and only if it is

additive and preserves kernels.

Proof. If a functor is left exact it preserve in particular finite inverse products, and so it

preserves binary biproducts, and by Proposition A.6.5 it is additive.

If a functor is additive By Proposition A.6.5 it preserves binary biproducts, and if it

preserves kernels it preserves also binary inverse equalisers. Then by Theorem A.2.1 it

preserves finite inverse limits. z

Proposition A.7.18. A functor between abelian categories is right exact if and only if it

is additive and preserves cokernels.

Proof. If a functor is right exact it preserve in particular finite direct products, and so it

preserves binary biproducts, and by Proposition A.6.5 it is additive.

If a functor is additive By Proposition A.6.5 it preserves binary biproducts, and if it

preserves cokernels it preserves also binary direct equalisers. Then by Theorem (TO DO!!!)

it preserves finite direct limits. z
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Lemma A.7.11. If f is a kernel of k ˝ j and j is an isomorphism, then j ˝ f is a kernel

of k.

Proof. Surely k ˝ pj ˝ fq “ 0dompfq

codpkq . If k ˝h “ 0domphq

codpkq , set l “ j´1 ˝h; then pk ˝ jq ˝ l “ 0domplq

codpkq ,

thus l “ f ˝ h˚, and h “ j ˝ f ˝ h˚. If also h “ j ˝ f ˝ h˝, then h˝ “ h˚ because j ˝ f is a

monomorphism. z

Lemma A.7.12. If f is a kernel of i ˝ k and i is an isomorphism, then f is a kernel of k.

Proof. Since i˝k˝f “ 0dompfq

codpiq then k˝f “ 0dompfq

codpkq . If k˝g “ 0dompgq

codpkq , then also i˝k˝g “ 0dompgq

codpiq ,

thus g “ f ˝ g˚. If also g “ f ˝ g˝ then g˝ “ g˚ because f is a monomorphism. z

Lemma A.7.13. If f is a cokernel of j˝k and j is an isomorphism, then f ˝j is a cokernel

of k.

Proof. Surely pf ˝ jq ˝ k “ 0dompkq

codpfq . If h ˝ k “ 0dompkq

codphq , set l “ h ˝ j´1; then l ˝ pj ˝ kq “ 0dompkq

codplq ,

thus l “ h˚ ˝ f , and h “ h˚ ˝ f ˝ j. If also h “ h˝ ˝ f ˝ j, then h˝ “ h˚ because f ˝ j is an

epimorphism. z

Lemma A.7.14. If f is a cokernel of k ˝ i and i is an isomorphism, then f is a cokernel

of k.

Proof. Since f ˝k˝i “ 0dompiq

codpfq then f ˝k “ 0dompkq

codpfq . If g˝k “ 0dompkq

codpgq , then also g˝k˝i “ 0dompiq

codpgq ,

thus g “ g˚ ˝ f . If also g “ g˝ ˝ f then g˝ “ g˚ because f is an epimorphism. z

Lemma A.7.15. If in the commutative diagram

0 // a1

f1 //

i1
��

a2

f2 //

i2
��

a3
//

i3
��

0

0 // b1

g1 // b2

g2 // b3
// 0

the first row is exact and the vertical morphisms are isomorphisms, then the second row is

also exact.

Proof. Since f1 “ kerpf2q “ kerpi´1
3 ˝ g2 ˝ i2q, from Lemma A.7.12 f1 “ kerpg2 ˝ i2q and from

Lemma A.7.11 i2 ˝ f1 “ kerpg2q, thus g1 ˝ i1 “ kerpg2q and g1 “ kerpg2q.

Since f2 “ cokpf1q “ cokpi´1
2 ˝ g1 ˝ i1q, from Lemma A.7.14 f2 “ cokpi´1

2 ˝ g1q and from

Lemma A.7.13 f2 ˝ i
´1
2 “ cokpg1q, thus i´1

3 ˝ g2 “ cokpg1q and g2 “ cokpg1q. z
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Appendix B

Algebraic types and varieties of

algebras

B.1 Algebraic types

Definition B.1.1. An algebraic type Ω is a pair pS, fq where S is a set and f is a map

from S to OpSetq. The set S is called the operation set of Ω and its elements are called

the operation symbols of Ω, the map f is called the arity map of Ω and for s P S the

set fpsq is called the arity of s.

Notation B.1.1. For an algebraic type Ω we will write |Ω| for its operation set and arΩ for

its arity map.

Definition B.1.2. An algebraic type Ω is called finitary if for each s P |Ω|, cardparΩpsqq ă

ω.

An algebraic type Ω is called conventional if |Ω| is a cardinal and for each s P |Ω|, arΩpsq

is a cardinal.

Definition B.1.3. Let Ω be an algebraic type. An Ω-algebra is a pair pT, pfsqsP|Ω|q where

T is a set and for each s P |Ω| fs is a map from TarΩpsq to T, that is, an operation of arity

arΩpsq on T.

Notation B.1.2. For an Ω algebra A “ pT, pfsqsP|Ω|q we will write |A| for T and for s P |Ω|

sA for fs.

Definition B.1.4. If Aa and B are Ω-algebras, an homomorphism from A to B is a

map f : |A| Ñ |B| such that for each s P |Ω| and each pxiqiParΩpsq
P |A|arΩpsq

fpsAppxiqiParΩpsq
qq “ sB

`

pfpxiqqiParΩpsq

˘

. (B.1)

Notation B.1.3. If Ω is an algebraic type, Ω-Alg is the category of Ω-algebras and homo-

morphisms between Ω-algebras.
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Definition B.1.5. Let A be an Ω-algebra. A subalgebra of A is an Ω-algebra B such

that |B| Ď |A| and the inclusion map from B to A is a homomorphism.

Remark B.1.1. If A is an Ω-algebra the subalgebras of A correspond to the subsets of |A|

which are closed under the operations of A.

Notation B.1.4. If B is a subalgebra of A we will write B Ď A.

Remark B.1.2. The subalgebras of an Ω-algebra constitute a set partially ordered by the

relation Ď.

Notation B.1.5. The set of subalgebras of an Ω-algebra A will be noted by SpAq.

Definition B.1.6. A homomorphic image of an Ω-algebra A is an Ω-algebra B

such that there exists a homomorphism from A to B which is surjective as a map from

|A| to |B|.

Proposition B.1.1. Let A be an Ω-algebra. For any S Ď SpAq there is B Ď A such that

|B| “
Ş

CPS
|C|.

Definition B.1.7. Let A be an Ω-algebra, S Ď SpAq. The subalgebra B Ď A such that

|B| “
Ş

CPS
|C| is called the intersection subalgebra of S and noted by

Ű

S.

Definition B.1.8. Let A be an Ω-algebra, X Ď |A|. The subalgebra of A

AX
“
ę

tY P SpAq|X Ď Yu (B.2)

is called the subalgebra of A generated by X.

Remark B.1.3. For an Ω-algebra A and X Ď |A|, AX is the smallest subalgebra of A whose

set contains X.

Remark B.1.4. For an Ω-algebra A, X Ď |A| is the set of a subalgebra of A if and only if

X “ |AX|.

Definition B.1.9. We say that an Ω-algebra A is generated by X Ď |A| if A “ AX.

Remark B.1.5. A “ AX if and only if A is the only subalgebra of A whose set contains X.

Definition B.1.10. Let f P SetpI,OpSetqq. The set

ą

f “
!

x P Set
`

I,Ť imgpfq
˘

| xpiq P fpiq
)

(B.3)

is called the cartesian product of f .

For i P I the maps

pˆfi :
ą

f Ñ fpiq

x ÞÑ xpiq
(B.4)

are called the projections of
Ś

f .
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Notation B.1.6. If C is a category by saying that pciqiPI is a family of elements of C

we understand that there is f P SetpI,OpCqq such that for i P I fpiq “ ci.

The cartesian product of a family of sets pSiqiPI will also be written as

ą

iPI

Si (B.5)

Lemma B.1.1. If pAiqiPI is a small FAMILY of Ω-algebras, let pP, pπqiPIq P
ś

iPI|Ai|. There

is an Ω-algebra P such that |P| “ P, the πi are Ω-algebra homomorphisms, and pP, pπqiPIq

is an inverse product of the Ai in Ω-Alg. For s P |Ω| the operation sP is defined by

sPppxiqiParpsqq “ sPpppxijqjPIqiParpsqq “ psAppxijqiParpsqqqjPI . (B.6)

Proof. Routine check. z

Lemma B.1.2. Let h1, h2PΩ-AlgpA,Bq, and let pE, iq be the standard equalizer of h1 and

h2 as set maps, that is

E “ txP|A||h1pxq “ h2pxqu (B.7)

and

i : E Ñ |A|

x ÞÑ x.
(B.8)

Then E “ |AE| and i is an Ω-algebra homomorphism.

Proof. Routine check. z
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Appendix C

Properties of a universe

A set U is a universe if

1. xPyPU ñ xPU

2. xPU^ yPU ñ tx, yuPU, ăx, yąPU, xˆ yPU

3. xPU ñ PpxqPU, YxPU

4. ωPU

5. if f : xÑ y is surjective, xPU and y Ă U then yPU
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Appendix D

Symbols

• Ux

• Uo
x

• C q quotient category of category C

• pasqsPS: collection of objects as indexed by the set S

• Set: category of sets

• Grp: category of groups

• Ab: category of abelian groups

• Algτ : category of τ -algebras.

• Algτ,A: category of τ -algebras over τ -algebra A.

• 0a
b: null morphism from a to b.

• Psh: Category of presheaves

• PshX: Category of presheaves on topological space X

• PshpX,Cq: Category of presheaves of category C on topological space X

• Psh˚X,τ : Category of presheaves of τ -algebras on topological space X

• Psh˚X,τ,A: Category of presheaves of τ -algebras over A on topological space X

• Sh: Category of sheaves

• ShX: Category of sheaves on topological space X

• ShX,C: Category of sheaves of category C con topological space X
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• Sh˚X,τ : Category of sheaves of τ -algebras on topological space X

• Sh˚X,τ,A: Category of sheaves of τ -algebras over A on topological space X

• SS: Category of sheaf spaces

• SSX: Category of sheaf spaces on topological space X

• SSX,τ : Category of sheaf spaces of τ -algebras con topological space X

• Sh˚X,τ,A: Category of sheaf spaces of τ -algebras over A on topological space X

• X̂ category associated to topological space X

• φ̂ functor associated to continuous map φ

• XS: underlying set f topological space X

• XT : family of open sets of topological space X

• S˚: discrete category of set S

• 0: trivial subgroup t0u of Z, trivial abelian group

• Fo: object function of functor F

• Fm: morphism function of functor F

• ΣpE , Uq: set of sections of sheaf space E over open U

• B: base τ -algebra of τ -algebra over A B

• αB: structure map of τ -algebra over A B

• rf sa: subobject of a defined by morphism f

• rf sa: superobject of a defined by morphism f



Appendix E

Questions

• If two morphisms of presheaves agree on the stalk at x, do they agree on a neigh-

bourhood of its?
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